【题目】已知函数
.
(1)若
,且
在
上存在零点,求实数
的取值范围;
(2)若对任意
,存在
使
,求实数
的取值范围;
(3)若存在实数
,使得当
时,
恒成立,求实数
的最大值.
【答案】(1)
;(2)
;(3)10.
【解析】
(1)由
时,
,令
,当
时,分离参数
,再令
,得出
的单调性,从而得出
的值域,可得实数a的取值范围;
(2)由
得
,即
令
,则
的对称轴为
,由
得对称轴的范围
,从而得
当
的最小值为
,再由
,得
,可得
的范围;
(3)
的对称轴为
,根据对称轴与区间
的关系分情况讨论
的单调性,求出最值,根据
列出不等式组,化简得出
的取值范围,从而得到实数
的最大值.
(1)由
时,
,令
,当
时,
,
令
,则
的定义域为
,设
,则
,
当
时,
,当
时,
,
所以
在
上单调递减,在
上单调递增,因为
是定义域为
的奇函数,
所以
在
上单调递减,在
上单调递增,
当
时,
或
,所以
或
,所以要使
在
上存在零点,则需
或
.
故:实数a的取值范围是
或
.
(2)由
得
,即
令
,则
的对称轴为
,当
时,对称轴
,
所以当
时,
的最小值为
,而
,所以
,
所以要使对任意
,存在
使
,则需
;
(3)
的对称轴为
.
①若
,则
在
上单调递增,
,
由
,得
,
解不等式组
,得
.
②若
,即
时,
在
上单调递减,在
单调递增,且
,
.
,即
,得
.
③若
,即
时,
在
单调递减,在
单调递增,且
,
,即
,则
.
④若
,即
时,
在
上单调递减,
,
,即
,则
.
综上,
的取值范围是
,
的最大值为10.
科目:高中数学 来源: 题型:
【题目】设
,
是两条不同的直线,
,
,
是三个不同的平面,给出下列四个命题:
①若
,
,则![]()
②若
,
,
,则![]()
③若
,
,则![]()
④若
,
,则![]()
其中正确命题的序号是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生产旅游纪念品的工厂,拟在2017年度进行系列促销活动.经市场调查和测算,该纪念品的年销售量x(单位:万件)与年促销费用t(单位:万元)之间满足3-x与t+1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2017年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为“年平均每件生产成本的1.5倍”与“年平均每件所占促销费的一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)
(1)请把该工厂2017年的年利润y(单位:万元)表示成促销费t(单位:万元)的函数;
(2)试问:当2017年的促销费投入多少万元时,该工厂的年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,无穷数列
的首项
.
(1)如果
,写出数列
的通项公式;
(2)如果
(
且
),要使得数列
是等差数列,求首项
的取值范围;
(3)如果
(
且
),求出数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家的学习兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下列数学问题的答案:已知数列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一项是
,接下来的两项是
,再接下来的三项是
,……,以此类推,求满足如下条件的最小整数
且该数列的前
项和为2的整数幂,那么该软件的激活码是________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地计划在一处海滩建造一个养殖场.
![]()
(1)如图1,射线OA,OB为海岸线,
,现用长度为1千米的围网PQ依托海岸线围成一个
的养殖场,问如何选取点P,Q,才能使养殖场
的面积最大,并求其最大面积.
(2)如图2,直线l为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB(点A,B在直线l上),使三角形OAB面积最大,设其为
;方案二:围成弓形CDE(点D,E在直线l上,C是优弧所在圆的圆心且
),其面积为
;试求出
的最大值和
(均精确到0.01平方千米),并指出哪一种设计方案更好.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.某地区2019年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到如下频率分布直方图,且规定计分规则如下表:
![]()
每分钟跳 绳个数 |
|
|
|
|
|
得分 | 16 | 17 | 18 | 19 | 20 |
(Ⅰ)现从样本的100名学生中,任意选取2人,求两人得分之和不大于33分的概率;
(Ⅱ)若该校初三年级所有学生的跳绳个数
服从正态分布
,用样本数据的平均值和方差估计总体的期望和方差(结果四舍五入到整数),已知样本方差
(各组数据用中点值代替).根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设明年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,利用现所得正态分布模型:
(ⅰ)预估全年级恰好有1000名学生,正式测试时每分钟跳193个以上的人数.(结果四舍五入到整数)
(ⅱ)若在该地区2020年所有初三毕业生中任意选取3人,记正式测试时每分钟跳202个以上的人数为
,求随机变量
的分布列和期望.
附:若随机变量
服从正态分布
,
,则
,
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com