精英家教网 > 高中数学 > 题目详情
5.在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
成绩/编号12345
物理(x)9085746863
数学(y)1301251109590
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$)
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.

分析 (1)根据表中数据计算$\overline{x}$、$\overline{y}$,求出回归系数$\widehat{b}$、$\widehat{a}$,写出回归方程,利用回归方程计算x=80时$\widehat{y}$的值即可;
(2)抽取的五位学生中成绩高于100分的有3人,X的可以取1,2,3,计算对应的概率值,写出X的分布列,计算数学期望值.

解答 解:(1)根据表中数据计算$\overline{x}$=$\frac{1}{5}$×(90+85+74+68+63)=76,
$\overline{y}$=$\frac{1}{5}$×(130+125+110+95+90)=110,
$\sum_{i=5}^{5}$${{x}_{i}}^{2}$=902+852+742+682+632=29394,
$\sum_{i=1}^{5}$xiyi=90×130+85×125+74×110+68×95+63×90=42595,
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{42595-5×76×110}{29394-5{×76}^{2}}$=$\frac{795}{514}$≈1.5,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=110-1.5×76=-4;
∴x、y的线性回归方程是$\widehat{y}$=1.5x-4,
当x=80时,$\widehat{y}$=1.5×80-4=116,
即某位同学的物理成绩为80分,预测他的数学成绩是116;
(2)抽取的五位学生中成绩高于100分的有3人,
X表示选中的同学中高于100分的人数,可以取1,2,3,
P(X=1)=$\frac{{C}_{3}^{1}{•C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,P(X=2)=$\frac{{C}_{3}^{2}{•C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$,
P(X=3)=$\frac{{C}_{3}^{3}{•C}_{2}^{0}}{{C}_{5}^{3}}$=$\frac{1}{10}$;
故X的分布列为:

X123
p$\frac{3}{10}$$\frac{3}{5}$$\frac{1}{10}$
X的数学期望值为E(X)=1×$\frac{3}{10}$+2×$\frac{3}{5}$+3×$\frac{1}{10}$=1.8.

点评 本题考查了线性回归方程的应用问题,也考查了离散型随机变量的分布列和期望问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD中点,M是棱PC上的点,AD=2BC.
(1)求证:平面POB⊥平面PAD;
(2)若PA∥平面BMO,求$\frac{PM}{MC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z=2+i,则$\frac{\overline{z}}{z}$=(  )
A.$\frac{3}{5}$-$\frac{4}{5}$iB.-$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{5}{3}$-$\frac{4}{3}$iD.-$\frac{5}{3}$+$\frac{4}{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“方程f′(x)=0有解”是“函数y=f(x)有极值”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在某次摸底考试中,随机抽取100个人的成绩频率分布直方图如图,若参加考试的共有4000人,那么分数在90分以上的人数约为2600人,根据频率分布直方图估计此次考试成绩的中位数为97.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{1}{ln(4x-3)}$的定义域为{x|x>$\frac{3}{4}$且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|y=$\sqrt{2x-{x}^{2}}$},B={y|y=2x,x∈A},则A∩B=(  )
A.[0,1)B.[1,2]C.(2,4]D.[2.4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a∈R,若复数z=$\frac{a-i}{3+i}$(i是虚数单位)的实部为2,则a的值为(  )
A.7B.-7C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知α,β∈(0,π),且$cos(2α+β)-2cos(α+β)cosα=\frac{3}{5}$,则sin2β=$-\frac{24}{25}$.

查看答案和解析>>

同步练习册答案