分析 (1)根据向量数量积的公式进行化简,结合三角函数的辅助角公式进行转化求解即可.
(2)根据条件先求出A的大小,结合余弦定理以及向量共线的坐标公式进行求解即可.
解答 解(1)由题意知f(x)=$\overrightarrow a•\overrightarrow b$=2cos2x-$\sqrt{3}$sin2x=1+cos2x-$\sqrt{3}$sin2x=1+2cos(2x+$\frac{π}{3}$).
则函数f(x)的最小正周期T=$\frac{2π}{2}$=π,
由$2kπ-π≤2x+\frac{π}{3}≤2kπ$,得$kπ-\frac{2π}{3}≤x≤kπ-\frac{π}{6}$
则f(x)的单调递减区间[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$],k∈Z
(2)∵$f(A)=1+2cos({2A+\frac{π}{3}})=-1$,∴$cos({2A+\frac{π}{3}})=-1$,又$\frac{π}{3}<2A+\frac{π}{3}<\frac{7π}{3}$,
∴$2A+\frac{π}{3}=π$,即$A=\frac{π}{3}$.
∵$a=\frac{{\sqrt{7}}}{2}$,由余弦定理得a2=b2+c2-2bccosA=(b+c)2-3bc.
因为向量$\overrightarrow m=(3,sinB)$与$\overrightarrow n=(2,sinC)$共线,所以2sinB=3sinC,
由正弦定理得2b=3c.∴$b=\frac{3}{2},c=1$.
点评 本题主要考查向量数量积的应用以及向量与三角函数的综合,利用三角函数的辅助角公式以及正弦定理余弦定理是解决本题的关键.考查学生的计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 012 | B. | 1 006 | C. | 2 016 | D. | 1 007 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com