14£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬DΪACµÄÖе㣬EÊÇABÉϵĵ㣬ÇÒ$\frac{AE}{EB}$=$\frac{1}{2}$£¬CEºÍBD½»ÓÚµãF£¬Éè$\overrightarrow{BD}$=$\overrightarrow{a}$£¬$\overrightarrow{BA}$=$\overrightarrow{b}$£®
£¨1£©ÓÃ$\overrightarrow{a}$£¬$\overrightarrow{b}$±íʾ$\overrightarrow{BC}$£¬$\overrightarrow{EC}$£»
£¨2£©Çó$\frac{BF}{FD}$µÄÖµ£®

·ÖÎö £¨1£©ÓÉ$\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BD}$µÃ$\overrightarrow{BC}$=2$\overrightarrow{BD}$-$\overrightarrow{BA}$=2$\overrightarrow{a}$-$\overrightarrow{b}$£»$\overrightarrow{EC}$=$\overrightarrow{EA}+\overrightarrow{AC}$=$\overrightarrow{EA}+2\overrightarrow{AD}$£»
£¨2£©Éè$\overrightarrow{EF}=¦Ë$$\overrightarrow{EC}$£¬Çó³ö$\overrightarrow{BF}$£¬ÓÉB£¬F£¬DÈýµã¹²ÏßµÃ$\overrightarrow{BF}$=k$\overrightarrow{BD}$£¬Áз½³Ì½â³ö¦Ë£¬k£¬µÃµ½$\frac{BF}{FD}$µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßDÊÇACµÄÖе㣬¡à$\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BD}$£¬¡à$\overrightarrow{BC}$=2$\overrightarrow{BD}$-$\overrightarrow{BA}$=2$\overrightarrow{a}$-$\overrightarrow{b}$£»
¡ß$\frac{AE}{EB}$=$\frac{1}{2}$£¬¡à$\overrightarrow{EA}$=$\frac{1}{3}\overrightarrow{BA}$=$\frac{1}{3}\overrightarrow{b}$£¬¡ß$\overrightarrow{AD}$=$\overrightarrow{BD}-\overrightarrow{BA}$=$\overrightarrow{a}-\overrightarrow{b}$£¬¡à$\overrightarrow{EC}$=$\overrightarrow{EA}+\overrightarrow{AC}$=$\overrightarrow{EA}+2\overrightarrow{AD}$=2$\overrightarrow{a}$-$\frac{5}{3}$$\overrightarrow{b}$£®
£¨2£©Éè$\overrightarrow{EF}=¦Ë$$\overrightarrow{EC}$=2¦Ë$\overrightarrow{a}$-$\frac{5¦Ë}{3}$$\overrightarrow{b}$£¬Ôò$\overrightarrow{BF}$=$\overrightarrow{BE}+\overrightarrow{EF}$=$\frac{2}{3}$$\overrightarrow{b}$+2¦Ë$\overrightarrow{a}$-$\frac{5¦Ë}{3}$$\overrightarrow{b}$=2¦Ë$\overrightarrow{a}$+$\frac{2-5¦Ë}{3}$$\overrightarrow{b}$£®
¡ßB£¬F£¬DÈýµã¹²Ïߣ¬¡à$\overrightarrow{BF}$=k$\overrightarrow{BD}$=k$\overrightarrow{a}$£¬¡à$\left\{\begin{array}{l}{2¦Ë=k}\\{\frac{2-5¦Ë}{3}=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{¦Ë=\frac{2}{5}}\\{k=\frac{4}{5}}\end{array}\right.$£®
¡à$\overrightarrow{BF}=\frac{4}{5}\overrightarrow{BD}$£¬¡à$\frac{BF}{FD}$=4£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄ»ù±¾¶¨Àí£¬Èýµã¹²ÏßÔ­ÀíµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÏÂÁÐÃüÌâÖÐÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
¢ÙÈô¡°Ò»¸öÕûÊýµÄĩλÊý×ÖÊÇ0£¬ÔòÕâ¸öÕûÊýÄܱ»5Õû³ý¡±µÄÄæÃüÌ⣻
¢ÚÈô¡°Ò»¸öÈý½ÇÐÎÓÐÁ½Ìõ±ßÏàµÈ£¬ÔòÕâ¸öÈý½ÇÐÎÓÐÁ½¸ö½ÇÏàµÈ¡±µÄ·ñÃüÌ⣻
¢Û¡°Ææº¯ÊýµÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ¡±µÄÄæ·ñÃüÌ⣻
¢Ü¡°Ã¿¸öÕý·½Ðζ¼ÊÇÆ½ÐÐËıßÐΡ±µÄ·ñ¶¨£»
¢ÝÉèa£¬b¡ÊR£¬Ôò¡°a£¾b¡±ÊÇ¡°a|a|£¾b|b|¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®·¢ÏÖÓÐÒ»Åú²»Ðâ¸Ö²ÄÁÏ£¬¿ÉÓÃÓÚÂ̵ØÎ§±ß£¬¾­²âËã¿ÉΧ³¤¶ÈΪ200Ã×£¬ÏÖÑ¡ÈçͼËùʾ4¿éͬÑù´óСµÄ³¤·½ÐÎÂ̵أ¬ËÄÖÜÓò»Ðâ¸ÖΧ±ß£¬ÖмäÓò»Ðâ¸Ö¸ô¿ª£®ÎÊÈçºÎÉè¼ÆËùΧÂ̵Ø×ÜÃæ»ý×î´ó£¿×î´ó×ÜÃæ»ýΪ¶àÉÙÆ½·½Ã×£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÈýÀâ×¶P-ABCµÄËĸö¶¥µã¶¼ÔÚÇòOµÄ±íÃæÉÏ£¬ÇÒPA=PB=PC=2$\sqrt{5}$£¬ÈôÆ½ÃæABC±»ÇòO½ØµÃµÄ½ØÃæÃæ»ýΪ16¦Ð£¬ÔòÇòOµÄ±íÃæ»ýΪ100¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªµã£¨b£¬$\sqrt{2}$a£©ÔÚË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ÉÏ£¬ÔòË«ÇúÏßCµÄ½¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
A£®x=¡À$\sqrt{2}$yB£®y=¡À$\sqrt{2}$xC£®y=¡À2xD£®x=¡À2y

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÉèÊýÁÐ{an}ÖУ¬a1=1£¬an=$\frac{n+1}{n-1}$an-1£¬ÔòͨÏʽan=$\frac{n£¨n+1£©}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÊýÁÐ6£¬0£¬6£¬0£¬¡­µÄÒ»¸öͨÏʽÊÇan=3+3•£¨-1£©n+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®É躯Êýf£¨x£©¶¨ÒåÓòΪ[0£¬1]£¬Èôf£¨x£©ÔÚ[0£¬x*]Éϵ¥µ÷µÝÔö£¬ÔÚ[x*£¬1]Éϵ¥µ÷µÝ¼õ£¬Ôò³Æx*Ϊº¯Êýf£¨x£©µÄ·åµã£¬f£¨x£©Îªº¬·åº¯Êý£®£¨ÌØ±ðµØ£¬Èôf£¨x£©ÔÚ[0£¬1]Éϵ¥µ÷µÝÔö»òµÝ¼õ£¬Ôò·åµãΪ1»ò0£©
¶ÔÓÚ²»Ò×Ö±½ÓÇó³ö·åµãx*µÄº¬·åº¯Êý£¬¿Éͨ¹ý×öÊÔÑéµÄ·½·¨¸ø³öx*µÄ½üËÆÖµ£®ÊÔÑéÔ­ÀíΪ£º¡°¶ÔÈÎÒâµÄx1£¬x2¡Ê£¨0£¬1£©£¬x1£¼x2£¬Èôf£¨x1£©¡Ýf£¨x2£©£¬Ôò£¨0£¬x2£©Îªº¬·åÇø¼ä£¬´Ëʱ³Æx1Ϊ½üËÆ·åµã£»Èôf£¨x1£©£¼f£¨x2£©£¬Ôò£¨x1£¬1£©Îªº¬·åÇø¼ä£¬´Ëʱ³Æx2Ϊ½üËÆ·åµã¡±£®
ÎÒÃǰѽüËÆ·åµãÓëx*Ö®¼ä¿ÉÄܳöÏÖµÄ×î´ó¾àÀë³ÆÎªÊÔÑéµÄ¡°Ô¤¼ÆÎó²î¡±£¬¼ÇΪd£¬ÆäֵΪd=max{max{x1£¬x2-x1}£¬max{x2-x1£¬1-x2}}£¨ÆäÖÐmax{x£¬y}±íʾx£¬yÖнϴóµÄÊý£©£®
£¨¢ñ£©Èôx1=$\frac{1}{4}$£¬x2=$\frac{1}{2}$£®Çó´ËÊÔÑéµÄÔ¤¼ÆÎó²îd£®
£¨¢ò£©ÈçºÎѡȡx1¡¢x2£¬²ÅÄÜʹÕâ¸öÊÔÑé·½°¸µÄÔ¤¼ÆÎó²î´ïµ½×îС£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£¨Ö»Ö¤Ã÷x1µÄȡֵ¼´¿É£©
£¨¢ó£©Ñ¡È¡x1£¬x2¡Ê£¨0£¬1£©£¬x1£¼x2£¬¿ÉÒÔÈ·¶¨º¬·åÇø¼äΪ£¨0£¬x2£©»ò£¨x1£¬1£©£®ÔÚËùµÃµÄº¬·åÇø¼äÄÚѡȡx3£¬ÓÉx3Óëx1»òx3Óëx2ÀàËÆµØ¿ÉÒÔ½øÒ»²½µÃµ½Ò»¸öеÄÔ¤¼ÆÎó²îd¡ä£®·Ö±ðÇó³öµ±x1=$\frac{1}{4}$ºÍx1=$\frac{2}{5}$ʱԤ¼ÆÎó²îd¡äµÄ×îСֵ£®£¨±¾ÎÊֻд½á¹û£¬²»±ØÖ¤Ã÷£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÃüÌâ¡°?x¡ÊR£¬x2-1£¾0¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®?x¡ÊR£¬x2-1¡Ü0B£®?x0¡ÊR£¬x02-1£¾0C£®?x0¡ÊR£¬x02-1¡Ü0D£®?x¡ÊR£¬x2-1£¼0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸