| A. | 2 | B. | $\frac{5}{9}$ | C. | $-\frac{7}{3}$ | D. | $\frac{5}{2}$ |
分析 作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答
解:作出不等式组对应的平面区域如图:
由z=x-2y,得y=$\frac{1}{2}x-\frac{z}{2}$,
平移直线y=$\frac{1}{2}x-\frac{z}{2}$,由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$经过点A时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,
此时z最大,
由$\left\{\begin{array}{l}{3x-2=0}\\{3y+2=0}\end{array}\right.$,解$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$,
即A($\frac{2}{3}$,-$\frac{2}{3}$),
此时zmax=$\frac{2}{3}$-2•(-$\frac{2}{3}$)=2,
故选:A.
点评 本题主要考查线性规划的应用,作出平面区域,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)>1 | B. | 0<f(x)<1 | C. | $1<f(x)<\frac{3}{2}$ | D. | $0<f(x)<\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,3] | B. | $({-∞,\frac{1}{3}}]$ | C. | $({\frac{1}{3},\frac{2}{3}}]$ | D. | $({\frac{2}{3},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com