精英家教网 > 高中数学 > 题目详情
已知|
a
|=2,|
b
|=3,且|3
a
-2
b
|=6,若向量
a
b
的起点在坐标原点O处,终边分别为A,B,则△AOB的面积为
 
考点:平面向量数量积的运算
专题:计算题,解三角形,平面向量及应用
分析:运用向量的数量积的性质:向量的平方即为模的平方,再由向量的数量积的定义可得cos∠AOB=
1
2
,再由同角的平方关系和三角形的面积公式计算即可得到.
解答: 解:由|
a
|=2,|
b
|=3,且|3
a
-2
b
|=6,
则(3
a
-2
b
2=36,
即9
a
2
-12
a
b
+4
b
2
=36,
即9×4-12
a
b
+4×9=36,
可得
a
b
=3,
即|
a
|•|
b
|cos∠AOB=3,
即有cos∠AOB=
1
2

sin∠AOB=
3
2

则有△AOB的面积为S=
1
2
|
a
|•|
b
|sin∠AOB
=
1
2
×2×3×
3
2
=
3
3
2

故答案为:
3
3
2
点评:本题考查向量的数量积的定义和性质,同时考查三角形的面积公式,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数且f(log
1
2
4)=-3,当x>0时,f(x)=ax(a>0,a≠1),则实数a的值为(  )
A、9
B、3
C、
3
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=60°,∠B=45°,c=1,求此三角形的最小边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

某快递公司正在统计所有快递员某一天的收件数,有些数据还没有填好,如下表所示:
组别分组(件数)频数频率
[50,60)1 
[60,70) c
[70,80)10 
[80,90)b0.36
[90,100)12 
[100,110]60.12
合计 a 
(1)求a,b,c的值,并估计当天收件数的中位数;
(2)若按分层抽样从四、五、六组中抽出6人进行经验交流,再从这6人中选取2人在公司早会上发言,求发言的2人不都是出自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计(满分150分),其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:

(1)根据以上两个直方图完成下面的2×2列联表:
成绩性别优秀不优秀总计
男生
女生
总计
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?(注:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
(3)若从成绩在[130,140]的学生中任取2人,求取到的2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛掷两枚骰子,当至少有一枚5点或一枚6点出现时,就说这次试验成功,若设在90次试验中成功次数为ξ,则Eξ=(  )
A、30B、40C、45D、50

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x+x3(x∈R)当0<θ<
π
2
时,f(asinθ)+f(1-a)>0恒成立,则实数a的取值范围是(  )
A、(-∞,1]
B、(-∞,1)
C、(1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数①y=|x|;②y=
|x|
x
;③y=
x2
|x|
;④y=x+
x
|x|
在(-∞,0)上为增函数的有
 
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,B(-1,0),C(1,0).G,I分别是△ABC的重心和内心,
IG
BC

(1)求原点A的轨迹M的方程;
(2)过点C的直线交曲线M于P、Q两点,H是直线x=4上一点,设直线CH,PH,QH的效率分别为k1,k2,k2,求证:2k1=k2+k2

查看答案和解析>>

同步练习册答案