| A. | [$\frac{14}{5}$,7] | B. | [4,7] | C. | [$\frac{14}{5}$,4] | D. | [7,+∞) |
分析 作出不等式组对应的平面区域,利用直线斜率的几何意义进行求解即可.
解答
解:作出不等式组对应的平面区域如图,
Z=$\frac{y+x}{x}$=$\frac{y}{x}$+1
设k=$\frac{y}{x}$,在k的几何意义是区域内的点到原点的斜率,
由图象知OA的斜率最大,OB的斜率最小,
由$\left\{\begin{array}{l}{x=1}\\{x+y-7=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=6}\end{array}\right.$,得A(1,6),此时k=6,
由$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-7=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{5}{2}}\\{y=\frac{9}{2}}\end{array}\right.$,即B($\frac{5}{2}$,$\frac{9}{2}$),
此时k=$\frac{\frac{9}{2}}{\frac{5}{2}}$=$\frac{9}{5}$,$\frac{9}{5}$≤k≤6,
则$\frac{14}{5}$≤k+1≤7,
即Z=$\frac{y+x}{x}$的取值范围为[$\frac{14}{5}$,7],
故选:A
点评 本题主要考查线性规划的应用,利用目标函数的几何意义结合两点间的斜率公式进行转化求解是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=2sin(x+$\frac{π}{6}$) | B. | f(x)=2sin(2x+$\frac{2π}{3}$) | C. | f(x)=2sin(x+$\frac{π}{3}$) | D. | f(x)=2sin(2x+$\frac{5π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x<2} | B. | {x|-3<x<2} | C. | {x|-6<x<0} | D. | {x|x≥0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com