精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2x,等差数列{an}的公差为2.若f(a2+a4+a6+a8+a10)=4,则log2[f(a1)•f(a2)•f(a3)•…•f(a10)]=(  )
A.8B.4C.-6D.$\frac{1}{4}$

分析 由已知函数解析式结合f(a2+a4+a6+a8+a10)=4求得a6,再求f(a1)•f(a2)•f(a3)•…•f(a10)的值,代入对数式得答案.

解答 解:由f(x)=2x,得${2}^{{a}_{2}+{a}_{4}+{a}_{6}+{a}_{8}+{a}_{10}}={2}^{5{a}_{6}}=4$,
∴5a6=2,${a}_{6}=\frac{2}{5}$,
∴f(a1)•f(a2)•f(a3)•…•f(a10
=${2}^{{a}_{1}+{a}_{2}+…+{a}_{10}}={2}^{5({a}_{5}+{a}_{6})}$=${2}^{5(2{a}_{6}-2)}={2}^{5×(\frac{4}{5}-2)}={2}^{-6}$,
∴log2[f(a1)•f(a2)•f(a3)•…•f(a10)]=$lo{g}_{2}{2}^{-6}=-6$.
故选:C.

点评 本题考查等差数列的通项公式,考查了对数的运算性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.命题“若a2+b2=0,则a=0或b=0”的否命题是(  )
A.若a≠0或b≠0,则a2+b2≠0B.若a2+b2≠0,则a≠0且b≠0
C.若a=0且b=0,则 a2+b2≠0D.若a2+b2≠0,则a≠0或b≠0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设实数x,y满足$\left\{\begin{array}{l}{2x+y≤6}\\{x+2y≤6}\\{x≥0,y≥0}\end{array}\right.$,则Z=max{2x+y-1,x+2y+2}的取值范围是[-1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}中a1=1,an=$\frac{1}{2}$an-1+1(n≥2),则an=(  )
A.2-($\frac{1}{2}$)n-1B.($\frac{1}{2}$)n-1-2C.2-2n-1D.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC 中,A=30°,a=3,b=4,那么满足条件的△ABC 个数有(  )
A.不存在B.不能确定C.一个D.两个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=sin(3x+\frac{π}{4})$的最小正周期是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若向量数量积$\overrightarrow{a}$•$\overrightarrow{b}$<0则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ的取值范围是(  )
A.(0,$\frac{π}{2}$)B.[0,$\frac{π}{2}$)C.($\frac{π}{2}$,π]D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为$\frac{2π}{3}$+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an}是等比数列,a2•a10=4,且a2+a10>0,则a6=(  )
A.1B.2C.±1D.±2

查看答案和解析>>

同步练习册答案