分析 (1)推导出BA1=BC1,点E是A1C1的中点,从而BE⊥A1C1,由此能证明BE⊥AC.
(2)连结B1D1,交A1C1于点E,连结AC,BD,交于点O,连结OD1,推导出四边形BED1O是平行四边形,由此能证明BE∥平面ACD1.
解答
证明:(1)∵在直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形
∴BA1=BC1,
∵点E是A1C1的中点,
∴BE⊥A1C1,
∵AC∥A1C1,∴BE⊥AC.
(2)连结B1D1,交A1C1于点E,连结AC,BD,交于点O,连结OD1,
∵在直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形
∴D1E$\underset{∥}{=}$BO,∴四边形BED1O是平行四边形,
∴BE∥OD1,
∵OD1?平面ACD1,BE?平面ACD1,
∴BE∥平面ACD1.
点评 本题考查异面直线垂直的证明,考查线面平行的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{6}$,$\frac{π}{3}$] | B. | [-$\frac{π}{3}$,$\frac{5π}{3}$] | C. | [-$\frac{π}{6}$,$\frac{11π}{6}$] | D. | [-$\frac{π}{12}$,$\frac{5π}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,1] | C. | [0,1) | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{π}$ | B. | $\frac{2}{π}$ | C. | $\frac{3}{π}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,4) | B. | (2,4) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 21 | C. | 18 | D. | 24 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com