精英家教网 > 高中数学 > 题目详情
18.将除颜色完全相同的一个白球、一个黄球、两个红球红球分给三个小朋友,且每个小朋友至少分得一个球的分法有 (  )种.
A.15B.21C.18D.24

分析 把4个小球分成(2,1,1)组,其中2个小球分给同一个小朋友的有4种方法(红红,红黄,红白,白黄),分两类,根据分类计数原理可得.

解答 解:把4个小球分成(2,1,1)组,其中2个小球分给同一个小朋友的有4种方法(红红,红黄,红白,白黄),
若(红红,红黄,红白)分给其中一个小朋友,则剩下的两个球分给2个小朋友,共有3×3×A22=18种,
若(白黄两个小球)分给其中一个小朋友,剩下的两个红色小球只有1种分法,故有3×1=3种,
根据分类计数原理可得,共有18+3=21种.
故选:B.

点评 本题考查了分组分配的问题,关键是分组,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,点E是A1C1的中点.求证:
(1)BE⊥AC;
(2)BE∥平面ACD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数fn′(x)是fn(x)的导函数,f0(x)=ex(cosx+sinx),f1(x)=$\frac{f_0^'(x)}{{\sqrt{2}}}$,f2(x)=$\frac{f_1^'(x)}{{\sqrt{2}}}$,…,${f_{n+1}}(x)=\frac{f_n^'(x)}{{\sqrt{2}}}$(n∈N),则f2016(x)=(  )
A.ex(cosx+sinx)B.ex(cosx-sinx)C.-ex(cosx+sinx)D.ex(sinx-cosx)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知α是第二象限角,且$sin({\frac{π}{2}+α})=-\frac{{\sqrt{5}}}{5}$,则$\frac{{{{cos}^3}α+sinα}}{{cos({α-\frac{π}{4}})}}$=(  )
A.$-\frac{{11\sqrt{2}}}{15}$B.$-\frac{{9\sqrt{2}}}{5}$C.$\frac{{9\sqrt{2}}}{5}$D.$\frac{{11\sqrt{2}}}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有7名游客,其中4名外国游客,3名中国游客组团到蓟县盘山游玩,上山缆车每辆最多乘4人.
(I)7人计划分乘A、B两辆缆车先后上山,为了交流方便每辆缆车中各有两名外国游客,则有多少种分配方案;
(II)由于游客较多只有-辆空闲缆车,7人中随机选取4人乘车,其余3人爬山,求出乘缆车的4人中中国游客人数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.多项式(3x+2y)2(x-y)7的展开式中含有x5y4项的系数为-21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2})$的图象在y轴右侧与x轴第一个交点和第一个最高点的坐标分别为(x0,0)和(x0+$\frac{π}{2}$,2),若将函数f(x)的图象向左平移$\frac{π}{3}$个单位后所得函数图象关于原点对称
(1)求函数f(x)的解析式;
(2)若函数y=f(kx)+1(k>0)的周期为$\frac{2π}{3}$,且当x∈[0,$\frac{π}{3}$]时,方程f(kx)=m恰有两个不同的根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}为等比数列,其前n项的乘积为Tn,若T2=T8,则T10=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.等差数列{an}的前n项和为Sn,已知a1=-20,且S10=S15.求:
(1)数列{an}的通项公式an
(2)Sn的最小值及此时n的值.

查看答案和解析>>

同步练习册答案