精英家教网 > 高中数学 > 题目详情
5.河对岸有一个建筑物AB,建筑物的底部不可到达,利用量角器和米尺设计以下测量方案:选取与建筑物底部B在同一水平面内的两个测量点C和D.测得CD=a,在C点和D点测得塔顶A的仰角分别是α和β,且∠CBD=γ,试求出建筑物AB的高度.

分析 设AB=h,则BC=hcotα,BD=hcotβ,△BCD中,由余弦定理,可得方程,即可求塔高AB.

解答 解:设AB=h,则BC=hcotα,BD=hcotβ,
△BCD中,∠CBD=γ,CD=a,
由余弦定理,可得a2=h2cot2α+h2cot2β-2hcotα•hcotα•cosγ
∴h=$\sqrt{\frac{{a}^{2}}{co{t}^{2}α+co{t}^{2}β-2cotα•cotα•cosγ}}$.

点评 本题考查利用数学知识解决实际问题,考查余弦定理,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若f(x)=$\left\{\begin{array}{l}{lgx,}&{x>0}\\{x+{∫}_{0}^{a}3{t}^{2}dt,}&{x≤0}\end{array}\right.$,f(f(1))=1,则a的值是(  )
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2$\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{{F}_{2}Q}$=$\overrightarrow{0}$.若过A、Q、F2三点的圆恰好与直线1:x-$\sqrt{3}$y-3=0相切.
(1)求椭圆C的方程;
(2)设椭圆的右顶点为B,过椭圆右焦点F2作斜率为k的直线1与椭圆C交于M、N两点.当△MBN的面积为$\frac{6\sqrt{2}}{7}$时,求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设f′(x0)=-3,则$\underset{lim}{h→0}$$\frac{f({x}_{0}-h)-f({x}_{0})}{h}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{{3}^{x}-{3}^{-x}}{2}$,求它的反函数f-1(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(2,1),且直线l:x-2y-$\sqrt{6}$=0过椭圆C的一个焦点.
(1)求椭圆C的方程;
(2)已知直线l′平行于直线l,且与椭圆C交于不同的两点M,N,记直线AM的倾斜角为θ1,直线AN的倾斜角为θ2,试探究θ12是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{$\frac{{a}_{n}}{n+2}$}为等比数列,且a2=16,a3=40,则数列{$\frac{{4}^{n}}{{a}_{n}{a}_{n+1}}$}的前60项和为$\frac{10}{63}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在正方体ABCD-A1B1C1D1中,AA1与C1D1所成的角为90°;AA1与B1C所成的角为45°;B1C与BD所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=x-$\frac{1}{x}$-a1nx.
(1)当a=1时.求曲线y=f(x)在点(1,f(1))处的切线方程:
(2)若函数f(x)在定义域上为增函数,求实数a的取值范围:
(3)在(2)的条件下,若函数h(x)=x-lnx-$\frac{1}{e}$,?x1,x2∈[1,e]使得f(x1)≥h(x2)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案