精英家教网 > 高中数学 > 题目详情
12.将一个三角形木块水平放置,其平面直观图是如图所示的腰长为1的等腰直角三角形,则这个木块的面积是(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

分析 先计算直观图的面积,进而根据S原图=2$\sqrt{2}$S直观图,得到答案.

解答 解:将一个三角形木块水平放置,其平面直观图是如图所示的腰长为1的等腰直角三角形,
故直观图的面积:S直观图=$\frac{1}{2}$,
∴原图的面积:S原图=2$\sqrt{2}$S直观图=$\sqrt{2}$,
故选:B.

点评 本题考查的知识点是平面图形的直观图,熟练掌握S原图=2$\sqrt{2}$S直观图,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知某运动着的物体的运动方程为s(t)=$\frac{t-1}{{t}^{2}}$+2t2(位移单位:m,时间单位:s),求t=3s时物体的瞬时速度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.观察下列数列当n→∞时有无极限:
(1)1,-1,1,…,(-1)n-1,…;
(2)$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,…,$\frac{1}{{2}^{n}}$,…;
(3)$\frac{1}{2}$,$\frac{2}{3}$,$\frac{3}{4}$,…,$\frac{n}{n+1}$,…;
(4)1,3,5,…,2n-1,…

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=3sin(ωx+φ)对任意实数x都有f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x)恒成立,则f($\frac{π}{3}$)等于(  )
A.0B.3C.-3D.3或-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数f(x),若存在x0∈Z,满足|f(x0)|≤$\frac{1}{4}$,则称x0为函数f(x)的一个“近零点”.已知函数f(x)=ax2+bx+c(a>0)有四个不同的“近零点”,则a的最大值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在△ABC中,$\overrightarrow{BD}=2\overrightarrow{DC}$,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$D.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,曲线C1的参数方程为:$\left\{\begin{array}{l}{x=cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ-6sinθ+8cosθ=0(ρ≥0).
(1)求曲线C1的普通方程和曲线C2的直角坐标方程:
(2)直钱l:$\left\{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λt}\end{array}\right.$(t为参数)过曲线C1与y轴负半轴的交点,求直线l平行且与曲线C2相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=$\frac{x-4}{m{x}^{2}+4mx+3}$的定义域为R,则实数m的取值范围是(  )
A.(0,$\frac{3}{4}$)B.(0,$\frac{3}{4}$]C.[0,$\frac{3}{4}$]D.[0,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:?x∈[l,2],m≤x2,命题q:?x∈R,x2+mx+l>0
(Ⅰ)写出“¬p命题;
(Ⅱ)若命题p∧q为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案