精英家教网 > 高中数学 > 题目详情
8.已知双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线右支上一点,若|PF1|2=8a|PF2|,则双曲线离心率的取值范围是(  )
A.(1,3]B.[3,+∞)C.(0,3)D.(0,3]

分析 设|PF1|=m,|PF2|=n,根据双曲线定义可知|PF1|-|PF2|=2a,|PF1|2=8a|PF2|,得到n=2a,m=4a,同时利用三角形中两边之和大于第三边的性质,推断出2c≤6a,进而求得a和c的不等式关系,分析当p为双曲线顶点时,$\frac{c}{a}$=3且双曲线离心率大于1,最后综合答案可得.

解答 解:设|PF1|=m,|PF2|=n,
根据双曲线定义可知|PF1|-|PF2|=2a,|PF1|2=8a|PF2|,
∴m-n=2a,m2=8an,
∴$\frac{m-n}{{m}^{2}}$=$\frac{2a}{8an}$,
∴m2-4mn+4n2=0,
∴m=2n,
∴n=2a,m=4a,
在△PF1F2中,|F1F2|<|PF1|+|PF2|,
∴2c<4a+2a,
∴$\frac{c}{a}$<3,
当p为双曲线顶点时,$\frac{c}{a}$=3
又∵双曲线e>1,
∴1<e≤3,
故选:A.

点评 本题主要考查了双曲线的简单性质,三角形边与边之间的关系.解题的时候一定要注意点P在双曲线顶点位置时的情况,以免遗漏答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知正项等比数列{an}的第四项,第五项,第六项分别为1,m,9,则双曲线$C:\frac{y^2}{6}-\frac{x^2}{m}=1$的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+tcosφ}\\{y=1+tsinφ}\end{array}\right.$(t为参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标中,圆C的方程为ρ=4cosθ.
(Ⅰ)求l的普通方程和C的直角坐标方程;
(Ⅱ)当φ∈(0,π)时,l与C相交于P,Q两点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某科技博览会展出的智能机器人有 A,B,C,D 四种型号,每种型号至少有 4 台.要求每 位购买者只能购买1台某种型号的机器人,且购买其中任意一种型号的机器人是等可能的.现在有 4 个人要购买机器人.
(Ⅰ)在会场展览台上,展出方已放好了 A,B,C,D 四种型号的机器人各一台,现把他们 排成一排表演节目,求 A 型与 B 型相邻且 C 型与 D 型不相邻的概率;
(Ⅱ)设这 4 个人购买的机器人的型号种数为ξ,求ξ 的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}中,a1=1,Sn为数列{an}的前n项和,且当n≥2时,有$\frac{2{a}_{n}}{{a}_{n}{S}_{n}-{{S}^{2}}_{n}}$=1成立,则S2017=$\frac{1}{1009}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是偶函数又存在零点的是(  )
A.y=x2+1B.y=|lgx|C.y=cosxD.y=ex-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是菱形,$∠DAB=\frac{π}{3}$,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中点.
(Ⅰ)求证:直线AM∥平面PNC;
(Ⅱ)求证:直线CD⊥平面PDE;
(III)在AB上是否存在一点G,使得二面角G-PD-A的大小为$\frac{π}{3}$,若存在,确定G的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点F1,F2是椭圆的左右焦点,点A是椭圆上的点,△AF1F2的内切圆的圆心为M,若$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0,则椭圆的离心率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$z=\frac{{{{(1+i)}^4}{{(-1-\sqrt{3}i)}^7}}}{{{{(1-i)}^{12}}}}$,则|z|=8.

查看答案和解析>>

同步练习册答案