精英家教网 > 高中数学 > 题目详情
7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点F1,F2是椭圆的左右焦点,点A是椭圆上的点,△AF1F2的内切圆的圆心为M,若$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0,则椭圆的离心率为$\frac{2}{3}$.

分析 设点D是AF2的中点,由$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0⇒若$\overrightarrow{M{F}_{1}}$=-2($\overrightarrow{M{F}_{2}}$+$\overrightarrow{MA}$)=-4$\overrightarrow{MD}$,
即三点F1、M、D三点共线,且点M是靠近D的5等分点,△AF1F2与△AMF2的面积比为5:1;
如图$\overrightarrow{M{F}_{1}}+2\overrightarrow{M{F}_{2}}=\overrightarrow{MF}$,有$\frac{M{F}_{2}}{{F}_{1}F}=\frac{MH}{HF}=1:2$,由$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0,得2$\overrightarrow{AM}=\overrightarrow{MF}$,⇒AM:MH=3:2,⇒△AF1F2与△AMF1F2的面积比为5:2

解答 解:设点D是AF2的中点,
∵$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0⇒若$\overrightarrow{M{F}_{1}}$=-2($\overrightarrow{M{F}_{2}}$+$\overrightarrow{MA}$)=-4$\overrightarrow{MD}$,
∴三点F1、M、D三点共线,且点M是靠近D的5等分点,
△AF1F2与△AMF2的面积比为5:1;
如图$\overrightarrow{M{F}_{1}}+2\overrightarrow{M{F}_{2}}=\overrightarrow{MF}$,有$\frac{M{F}_{2}}{{F}_{1}F}=\frac{MH}{HF}=1:2$,
由$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0,得2$\overrightarrow{AM}=\overrightarrow{MF}$,⇒AM:MH=3:2,
∴△AF1F2与△AMF1F2的面积比为5:2
又∵△AMF2与△AMF1F2的面积比为AF2:F1F2=1:2,
AF2:F1F2:AF1=1:2:2,∴2a=3c,
椭圆的离心率为$\frac{2}{3}$.
故答案为:$\frac{2}{3}$

点评 本题考查了椭圆的离心率、向量的线性运算,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某大学高等数学老师这学期分别用A、B两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图如图:
(1)学校规定:成绩不得低于85分的为优秀,请填写如表的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班乙班合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(k2≥k)0.150.100.050.0250.100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线右支上一点,若|PF1|2=8a|PF2|,则双曲线离心率的取值范围是(  )
A.(1,3]B.[3,+∞)C.(0,3)D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=cos(ωx-$\frac{ωπ}{6}$)(ω>0)的最小正周期为π,则函数f(x)的图象(  )
A.可由函数g(x)=cos2x的图象向左平移$\frac{π}{3}$个单位而得
B.可由函数g(x)=cos2x的图象向右平移$\frac{π}{3}$个单位而得
C.可由函数g(x)=cos2x的图象向左平移$\frac{π}{6}$个单位而得
D.可由函数g(x)=cos2x的图象向右平移$\frac{π}{6}$个单位而得

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数$f(x)=\sqrt{3}sin\frac{x}{2}-cos\frac{x}{2}$的图象向右平移$\frac{2π}{3}$个单位长度得到函数y=g(x)的图象,则函数y=g(x)的一个单调减区间是(  )
A.$(-\frac{π}{2},-\frac{π}{4})$B.$(-\frac{π}{4},\frac{π}{2})$C.$(\frac{π}{2},π)$D.$(\frac{3π}{2},2π)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,直线mx+y+m-1=0,那么直线与椭圆位置关系(  )
A.相交B.相离C.相切D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设全集为R,集合A={x|2x2-x-6≥0},B={x|log2x≤2}.
(1)分别求A∩B和(∁RB)∪A;
(2)已知C={x|a<x<a+1}且C⊆B,求实数a的取值范围构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=2x-\frac{a}{x}$,且f(1)=3
(1)求a的值;
(2)判断函数的奇偶性;
(3)证明函数f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列四个命题:
①函数y=|x|与函数$y={(\sqrt{x})^2}$表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
④函数y=3(x-1)2的图象可由y=3x2的图象向右平移一个单位得到;
⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;
其中正确命题的序号是④⑤.(填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案