精英家教网 > 高中数学 > 题目详情
9.在路边安装路灯,灯柱AB与地面垂直,灯杆BC与灯柱AB所在平面与道路方向垂直,且∠ABC=120°,路灯C射出的光线如图中虚线所示,已知∠ACD=60°,路宽AD=18m.设灯柱高AB=h(m),∠ACB=θ(30°≤θ≤45°).

(1)求灯柱的高h(用θ表示);
(2)若灯柱AB与灯杆BC单位长度的造价相同,问当θ为多少时,灯柱AB与灯杆BC的总造价最低.

分析 (1)由条件求得∠BAC=60°-θ,∠CAD=30°+θ,∠ADC=90°-θ.△ACD中,利用正弦定理求得AC的值,在△ABC中,由正弦定理求得h的值.
(2)在△ABC中,由正弦定理求得BC的值,再根据 S=AB+BC=6$\sqrt{3}$+12sin(2θ+60°),根据30°≤θ≤45°,利用正弦函数的定义域和值域求得S的最小值.

解答:(1)如图所示:由于∠ABC=120°,∠ACB=θ,∴∠BAC=60°-θ.
∵∠BAD=90°,∴∠CAD=90°-(60°-θ)=30°+θ.
∵∠ACD=60°,∴∠ADC=90°-θ.
△ACD中,由于AD=18,由正弦定理可得$\frac{AC}{sin(90°-θ)}=\frac{18}{sin60°}$,
解得AC=12$\sqrt{3}$cosθ.
在△ABC中,由正弦定理可得$\frac{h}{sinθ}=\frac{12\sqrt{3}cosθ}{sin120°}$,解得h=12sin2θ.
(2)在△ABC中,由正弦定理可得$\frac{BC}{sin(60°-θ)}=\frac{12\sqrt{3}cosθ}{sin120°}$,
求得BC=24cosθsin(60°-θ)=6$\sqrt{3}$+6$\sqrt{3}$cos2θ-6sin2θ.
∴S=AB+BC=6$\sqrt{3}$+6$\sqrt{3}$cos2θ+6sin2θ=6$\sqrt{3}$+12sin(2θ+60°).
∵30°≤θ≤45°,∴120°≤2θ+60°≤150°,
∴当2θ+60°=150°,即θ=45°时,S取得最小值为(6$\sqrt{3}$+6)米.

点评 本题主要考查正弦定理的应用,三角形的内角和公式,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设实数a,b∈(0,$\frac{\sqrt{2}}{2}$),若lna-lnb>a2-b2,则a与b的大小关系为a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2+2bx+c(x∈R,a≠0).
(1)若a=-1,c=0,且y=f(x)在[-2,4]上的最大值为g(b),求g(b);
(2)若a>0,函数f(x)在[-10,-2]上不单调,且f(x)的值域为[0,+∞),求$\frac{f(1)}{b-2a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若0<x<$\frac{π}{2}$,则xtanx<1是xsinx<1的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=lg(ax-bx),常数a>1>b>0,则不等式f(x)>0的解集是(1,+∞)的充要条件是(  )
A.a>b+1B.a=b+1C.a<b+1D.a≥b+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={x∈Z|-3<x<2},B{x∈R|x2≥-2x},则A∩B=(  )
A.{-3,-2,0,1}B.{-2,-1,0,1}C.[-3,2]∪[0,2)D.[-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解关于x的不等式15x2+2ax-a2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.三棱锥各顶点的坐标分别为(0,0,0),(1,0,0),(0,2,0),(0,0,3),则三棱锥的体积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在数列{an}中,a1=2,a7=26,通项公式是项数n的一次函数.
(1)求数列{an}的通项公式.
(2)88是否是数列中{an}的项.

查看答案和解析>>

同步练习册答案