【题目】冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在
的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%,现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(2)现在要从年龄较大的第4,5组中用分层抽样的方法抽取8人,再从这8人中随机抽取3人进行问卷调查,求第4组恰好抽到2人的概率;
(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注交通道路安全的人数为随机变量X,求X的分布列与数学期望.
【答案】(1)平均数为
岁;中位数为
岁(2)
(3)详见解析
【解析】
(1)由频率分布直方图能求出
,由此能求出这
人年龄的样本平均数和中位数;
(2)第4,5组抽取的人数分别为6人,2人,设第4组中恰好抽取2人的事件为
,利用排列组合能求出事件
的概率;
(3)从所有参与调查的人中任意选出1人,关注交通道路安全的概率为
,
的所有可能取值为0,1,2,3,
,分别求出相应的概率,由此能求出
的分布列和数学期望.
解:(1)由
,得
,
平均数为
岁;
设中位数为x,则
,∴
岁.
(2)第4,5组抽取的人数分别为6人,2人.
设第4组中恰好抽取2人的事件为A,则
.
(3)从所有参与调查的人中任意选出1人,关注交通道路安全的概率为
,
X的所有可能取值为0,1,2,3,
∴
,
,
,
,
所以X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
∵
,∴
.
科目:高中数学 来源: 题型:
【题目】设
为实数,函数
.
(1)若函数
是偶函数,求实数
的值;
(2)若
,求函数
的最小值;
(3)对于函数
,在定义域内给定区间
,如果存在
,满足
,则称函数
是区间
上的“平均值函数”,
是它的一个“均值点”.如函数
是
上的平均值函数,
就是它的均值点.现有函数
是区间
上的平均值函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若动点
到定点
与定直线
的距离之和为4.
(1)求点
的轨迹方程,并画出方程的曲线草图;
(2)记(1)得到的轨迹为曲线
,问曲线
上关于点
(
)对称的不同点有几对?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面
为矩形,侧面
为正三角形,
,
,平面
平面
,
为棱
上一点(不与
、
重合),平面
交棱
于点
.
![]()
(1)求证:
;
(2)若二面角
的余弦值为
,求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在
的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%.现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(2)现在要从年龄较大的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行问卷调查,求第2组恰好抽到1人的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且点![]()
在函数
的图像上;
(1)求数列
的通项公式;
(2)设数列
满足:
,
,求
的通项公式;
(3)在第(2)问的条件下,若对于任意的
,不等式
恒成立,求实数
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
满足
,
.
(1)求
的通项公式;
(2)若
,数列
满足关系式
,求证:数列
的通项公式为
;
(3)设(2)中的数列
的前n项和为
,对任意的正整数n,
恒成立,求实数p的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com