精英家教网 > 高中数学 > 题目详情
6.为得到函数y=2cos2x-$\sqrt{3}$sin2x的图象,只需将函数y=2sin2x+1的图象(  )
A.向左平移$\frac{π}{12}$个长度单位B.向右平移$\frac{π}{12}$个长度单位
C.向左平移$\frac{5π}{12}$个长度单位D.向右平移$\frac{5π}{12}$个长度单位

分析 利用三角函数的恒等变换化简函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:∵y=2cos2x-$\sqrt{3}$sin2x=cos2x-$\sqrt{3}$sin2x+1=2sin($\frac{π}{6}$-2x)+1
=-2sin(2x-$\frac{π}{6}$)+1=2sin(2x+$\frac{5π}{6}$)+1,
将函数y=2sin2x+1的图象向左平移$\frac{5π}{12}$个长度单位,可得得到函数y=2sin(2x+$\frac{5π}{6}$)+1的图象,
故选:C.

点评 本题主要考查三角函数的恒等变换,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-ax+21n x.
(1)若函数y=f(x)在定义域上单调递增,求实数a的取值范围;
(2)设f(x)有两个极值点x1,x2,若x1∈(0,$\frac{1}{e}$],且f(x1)≥t+f(x2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在直角梯形ABCD中,AB∥DC,AD⊥AB,AD=AB=2DC=2,点E、F分别在线段DC、AB上,设$\overrightarrow{DE}$=λ$\overrightarrow{DC}$,$\overrightarrow{AF}$=λ$\overrightarrow{AB}$,则$\overrightarrow{AE}$•$\overrightarrow{CF}$的最小值为-$\frac{33}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.f(x)=asinx+bx3+1,若f(-2)=2,则f(2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点M在角θ终边的延长线上,且|OM|=2,则M的坐标为(  )
A.(2cosθ,2sinθ)B.(-2cosθ,2sinθ)C.(-2cosθ,-2sinθ)D.(2cosθ,-2sinθ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=3-2sinx的单调递增区间为[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ](k∈z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若tan(α+80°)=4sin420°,则tan(α+20°)的值为(  )
A.-$\frac{\sqrt{3}}{5}$B.$\frac{3\sqrt{3}}{5}$C.$\frac{\sqrt{3}}{19}$D.$\frac{\sqrt{3}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在如图所示的空间几何体中,边长为2的正三角形ABC所在平面与正三角形ABE所在平面互相垂直,DE在平面ABE内的射影为∠AEB的平分线且DE与平面AEB所成的角为60°,DE=2.
(Ⅰ)求证:CD⊥平面ABC;
(Ⅱ)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)+3f(-x)=log2(x+3),则f(1)=$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案