精英家教网 > 高中数学 > 题目详情

【题目】二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:

x

-4

-3

-2

-1

0

1

5

0

-3

-4

-3

m

1m=

2)在图中画出这个二次函数的图象;

3)当时,x的取值范围是

4)当时,y的取值范围是

【答案】10;(2)图象见解析;(34

【解析】

1)先确定出对称轴,根据抛物线的对称性即可求得;

2)根据二次函数图象的画法作出图象即可;

3)根据抛物线的对称性,(-45)关于直线x=-1的对称点是(25),根据图象即可求得结论,

4)根据函数图象,写y的取值范围即可.

1)由图表,根据抛物线的对称性,可知抛物线的顶点坐标为

所以抛物线的对称轴的方程为

又由关于直线的对称点是,所以.

2)函数图象如图所示;

3)因为关于直线x=-1的对称点是

由图象可知当时,x的取值范围是

x的取值范围是.

4)由图表可知,当时,时,时,

结合图象可知当时,y的取值范围是

y的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上单调递减,求实数的取值范围;

2)是否存在实数,使得上的值域恰好是?若存在,求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)抛物线的开口向 、对称轴为直线 、顶点坐标

2)当 时,函数有最 值,是

3)当 时,的增大而增大;当 时,的增大而减小;

4)该函数图象可由的图象经过怎样的平移得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种电路控制器在出厂时,每3件一等品应装成一箱,工人装箱时,不小心将2件二等品和1件一等品装入了一箱,为了找出该箱中的二等品,对该箱中的产品逐件进行测试,假设检测员不知道该箱产品中二等品的具体数量,求:

1)仅测试2件就找到全部二等品的概率;

2)测试的第2件产品是二等品的概率;

3)到第3次才测试出全部二等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“五四青年节”到来之际,启东中学将开展一系列的读书教育活动.为了解高二学生读书教育情况,决定采用分层抽样的方法从高二年级四个社团中随机抽取12名学生参加问卷调査.已知各社团人数统计如下:

(1)若从参加问卷调查的12名学生中随机抽取2名,求这2名学生来自同一个社团的概率;

(2)在参加问卷调查的12名学生中,从来自三个社团的学生中随机抽取3名,用表示从社团抽得学生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点O是四边形内一点,判断结论:,则该四边形必是矩形,且O为四边形的中心是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间四边形中, ,且平面平面.

(1)求证:

(2)若直线与平面所成角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于AB两点,点C的坐标为(0,1).当m变化时,解答下列问题:

(1)能否出现ACBC的情况?说明理由;

(2)证明过ABC三点的圆在y轴上截得的弦长为定值.

查看答案和解析>>

同步练习册答案