精英家教网 > 高中数学 > 题目详情
在△ABC中,A=
π
3
,C=
π
6
,b=2,则此三角形的最小边长是(  )
A、1
B、2
3
-2
C、
3
-1
D、
3
2
考点:余弦定理
专题:解三角形
分析:由A与C的度数求出B的度数,判断得出c为最小边,利用正弦定理即可求出c的值.
解答: 解:∵在△ABC中,A=
π
3
,C=
π
6
,b=2,
∴B=
π
2
,c为最小边,
∴由正弦定理
c
sinC
=
b
sinB
得:c=
bsinC
sinB
=
1
2
1
=1.
故选:A.
点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2+2x-4y-6=0的圆心和半径分别是(  )
A、(-1,-2),11
B、(-1,2),11
C、(-1,-2),
11
D、(-1,2),
11

查看答案和解析>>

科目:高中数学 来源: 题型:

下列哪个函数与y=x是同一个函数的是(  )
A、y=|x|
B、y=
x2
C、y=(
x
)2
D、y=t

查看答案和解析>>

科目:高中数学 来源: 题型:

直线
3
x-y-3=0绕它与x轴的交点逆时针旋转
π
3
所得直线为(  )
A、
3
x+y-3=0
B、
3
x-y+3=0
C、x-
3
y-3=0
D、x+
3
y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2+ax-(a+1)lnx
在x=2处的切线与直线2x-y+10=0平行.
(1)求参变量a的值;
(2)求函数y=f(x)的极值及取得极值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61,
(1)求
a
b
夹角θ;  
(2)求|
a
-2
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log4(ax2+2x+3).
(1)若f(x)定义域为R,求a的取值范围;
(2)若f(1)=1,求f(x)的单调区间;
(3)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙、丁和戊5名学生进行劳动技术比赛,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“很遗憾,你和乙都没有得到冠军”;对乙说“你当然不会是最差的”从上述回答分析,5人的名次排列可能有
 
种不同情况?(填数字)

查看答案和解析>>

同步练习册答案