精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(3,$\frac{π}{2}$),半径为1的圆.
(Ⅰ)求曲线C1,C2的直角坐标方程;
(Ⅱ)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围.

分析 (Ⅰ)消去参数φ可得C1的直角坐标方程,易得曲线C2的圆心的直角坐标为(0,3),可得C2的直角坐标方程;
(Ⅱ)设M(2cosφ,sinφ),由三角函数和二次函数可得|MC2|的取值范围,结合圆的知识可得答案.

解答 解:(Ⅰ)消去参数φ可得C1的直角坐标方程为$\frac{{x}^{2}}{4}$+y2=1,
∵曲线C2是圆心为(3,$\frac{π}{2}$),半径为1的圆
曲线C2的圆心的直角坐标为(0,3),
∴C2的直角坐标方程为x2+(y-3)2=1;
(Ⅱ)设M(2cosφ,sinφ),则|MC2|=$\sqrt{(2cosφ)^{2}+(sinφ-3)^{2}}$
=$\sqrt{4co{s}^{2}φ+si{n}^{2}φ-6sinφ+9}$=$\sqrt{-3si{n}^{2}φ-6sinφ+13}$
=$\sqrt{-3(sinφ+1)^{2}+16}$,
∴-1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,
由题意结合图象可得|MN|的最小值为2-1=1,最大值为4+1=5,
∴|MN|的取值范围为[1,5]

点评 本题考查椭圆的参数方程,涉及圆的知识和极坐标方程,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若双曲线$\frac{x^2}{2m}-\frac{y^2}{m}=1$的一条准线方程是y=1,则实数m的值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将离心率为e1的双曲线C1的实半轴长a和虚半轴长b同时增加m (m>0)个单位长度,得到离心率为e2的双曲线C2,则当a<b时有(  )
A.e1>e2B.e1<e2C.e1≤e2D.e1≥e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆与双曲线${x^2}-\frac{y^2}{3}=1$共同焦点,它们的离心率之和为$\frac{5}{2}$,则此椭圆方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{8}=1$B.$\frac{x^2}{12}+\frac{y^2}{16}=1$C.$\frac{x^2}{8}+\frac{y^2}{4}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.根据下列条件求方程.
(1)若抛物线y2=2px的焦点与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的右焦点重合,求抛物线的准线方程(5分) 
(2)已知双曲线的离心率等于2,且与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1有相同的焦点,求此双曲线标准方程.(5分)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线C:$\frac{{x}^{2}}{3}$-y2=1的左、右焦点分别为F1,F2,过点F2的直线与双曲线C的右支相交于P、Q两点,且点P的横坐标为2,则△PF1Q的周长为$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线l过点$(\sqrt{2},0)$且与双曲线x2-y2=2仅有一个公共点,这样的直线有(  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.以y=±$\frac{1}{2}$x为渐近线,且经过点P(2,2)的双曲线的方程为$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)=|x-1|-mx,若关于x的不等式f(x)<0解集中的整数恰为3个,则实数m的取值范围为   (  )
A.$\frac{2}{3}<m≤\frac{3}{4}$B.$\frac{3}{4}<m≤\frac{4}{5}$C.$\frac{2}{3}<m<\frac{3}{4}$D.$\frac{3}{4}<m<\frac{4}{5}$

查看答案和解析>>

同步练习册答案