精英家教网 > 高中数学 > 题目详情
一个铅球的直径是一个垒球的直径的2倍,一个皮球的直径又是一个铅球直径的3倍,则皮球的体积是垒球体积的(  )
A、6倍B、36倍
C、216倍D、125倍
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:求出一个皮球的直径是一个垒球的直径的6倍,即可得出结论.
解答: 解:∵一个铅球的直径是一个垒球的直径的2倍,一个皮球的直径又是一个铅球直径的3倍,
∴一个皮球的直径是一个垒球的直径的6倍,
∴皮球的体积是垒球体积的216倍.
故选:C.
点评:本题考查球的体积,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F是双曲线
x2
5
-
y2
4
=1的右焦点,点P在双曲线上,点Q在圆(x-8)2+(y-2)2=1上,则|PF|+|PQ|的最小值为(  )
A、3
5
-1
B、
5
+1
C、5
5
-1
D、7
5
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=(12-a)x在实数集R上是减函数,那么实数a的取值范围是(  )
A、(0,12)
B、(12,+∞)
C、(-∞,12)
D、(-12,12)

查看答案和解析>>

科目:高中数学 来源: 题型:

在频率分布直方图中,中位数两侧的面积和所占比例为(  )
A、1:3B、2:1
C、1:1D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中为真命题的是(  )
A、若m<1,则方程x2-2x+m=0无实数根
B、“矩形的两条对角线相等”的逆命题
C、“若x2+y2=0,则x,y全为0”的否命题
D、“若a<b,则am2<bm2”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f1(x)=
1
12
x4+aex
(其中a是非零常数,e是自然对数的底),记fn(x)=fn-1′(x)(n≥2,n∈N*
(1)求使满足对任意实数x,都有fn(x)=fn-1(x)的最小整数n的值(n≥2,n∈N*);
(2)设函数gn(x)=f4(x)+f5(x)+…+fn(x),若对?n≥5,n∈N*,y=gn(x)都存在极值点x=tn,求证:点An(tn,gn(tn))(n≥5,n∈N*)在一定直线上,并求出该直线方程;(注:若函数y=f(x)在x=x0处取得极值,则称x0为函数y=f(x)的极值点.)
(3)是否存在正整数k(k≥4)和实数x0,使fk(x0)=fk-1(x0)=0且对于?n∈N*,fn(x)至多有一个极值点,若存在,求出所有满足条件的k和x0,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}的首项都为1,且an+1=2an+1,bn+1=log2(an+1)+bn
(1)证明:{an+1}是等比数列;
(2)设cn=(-1)n(2013-
2bn-2
n
)•(an+1),是否存在正整数n0≤2014,使得不等式c0≤cn0对任意的n∈N*且n≤2014恒成立?若存在,求出n0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,且2Sn=an2+an,数列{bn}满足b1=1,2bn-bn-1=0(n≥2,n∈N *
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-a|+5x.
(Ⅰ)求不等式f(x)>5x+1的解集.
(Ⅱ)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.

查看答案和解析>>

同步练习册答案