精英家教网 > 高中数学 > 题目详情
10.已知命题p:?x0∈R,x02+x0+1≤0,则?p为(  )
A.?x∈R,x2+x+1>0B.?x∈R,x2+x+1≥0
C.?x0∈R,x02+x0+1>0D.?x0∉R,x02+x0+1>0

分析 根据特称命题的否定是全称命题,写出命题p的否定¬p即可.

解答 解:∵命题p:?x0∈R,x02+x0+1≤0,
∴¬p为:?x∈R,x2+x+1>0.
故选:A.

点评 本题考查了特称命题的否定是全称命题的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设等比数列{an}的前n项和为S,若27a3-a4=0,则$\frac{{S}_{4}}{{S}_{5}}$=$\frac{26572}{719453}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的面积为2,且满足0<$\overrightarrow{AB}$$•\overrightarrow{AC}$≤4,设$\overrightarrow{AB}$和$\overrightarrow{AC}$的夹角为θ
(1)求tanθ的取值范围
(2)求函数f(θ)=2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x+3y=2,则3x+27y的最小值为(  )
A.$2\sqrt{2}$B.4C.$3\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若△ABC外接圆的圆心为O,半径为4,$\overrightarrow{OA}$+2$\overrightarrow{AB}$+2$\overrightarrow{AC}$=$\overrightarrow{0}$,则$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影为(  )
A.1B.$\sqrt{7}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足a1=1,an+1=1-$\frac{1}{4{a}_{n}}$,bn=$\frac{2}{2{a}_{n}-1}$,其中n∈N*
(Ⅰ)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(Ⅱ)设cn=$\frac{{4{a_n}}}{n+1}$,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得Tn<$\frac{1}{{{c_m}{c_{m+1}}}}$对于n∈N*恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x,y满足条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=$\frac{y-1}{x+3}$的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.曲线|x|+y2-3y=0的对称轴方程是x=0,y的取值范围是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+4φ)(A>0,ω>0,0<φ<$\frac{π}{8}$)的部分图象如图所示,若将函数f(x)的图象纵坐标不变,横坐标缩短到原来的$\frac{1}{4}$,再向右平移$\frac{π}{6}$个单位,所得到的函数g(x)的解析式为(  )
A.g(x)=2sinxB.g(x)=2sin2xC.g(x)=2sin$\frac{1}{4}$xD.g(x)=2sin(2x-$\frac{π}{6}$)

查看答案和解析>>

同步练习册答案