15£®ÒÑÖªÏòÁ¿$\overrightarrow m$=£¨cosx-1£¬$\sqrt{3}$sinx£©£¬$\overrightarrow n$=£¨cosx+1£¬cosx£©£¬x¡ÊR£®f£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$
£¨1£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÈôccosB+bcosC=1ÇÒf£¨A£©=0£¬Çó¡÷ABCÃæ»ý×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓÃÆ½ÃæÏòÁ¿µÄÊýÁ¿»ý¹«Ê½µÃµ½Èý½Çº¯Êýʽ£¬È»ºóÀûÓñ¶½Ç¹«Ê½µÈ»¯¼ò£¬Çóµ¥µ÷ÔöÇø¼ä£»
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ£¬Çó³öA£¬È»ºó½èÖúÓÚÓàÏÒ¶¨ÀíÇó³öbc¡Ü1£¬´Ó¶øÇóÃæ»ýµÄ×îÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª$f£¨x£©={cos^2}x-1+\sqrt{3}sinxcosx=sin£¨{2x+\frac{¦Ð}{6}}£©-\frac{1}{2}$£®
Áî$2k¦Ð-\frac{¦Ð}{2}¡Ü2x+\frac{¦Ð}{6}¡Ü2k¦Ð+\frac{¦Ð}{2}$£¬
µÃf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä$[{k¦Ð-\frac{¦Ð}{3}£¬k¦Ð+\frac{¦Ð}{6}}]£¨{k¡ÊZ}£©$¡­6£¨·Ö£©
£¨2£©$f£¨A£©=sin£¨{2A+\frac{¦Ð}{6}}£©-\frac{1}{2}=0$£¬ÓÖ0£¼A£¼¦Ð£¬ÔòA=$\frac{¦Ð}{3}$
£®ÓÖccosB+bcosC=1µÃa=1£¬
ÓÉÓàÏÒ¶¨ÀíµÃ$1={b^2}+{c^2}-2bccos\frac{¦Ð}{3}¡Ý2bc-bc$£®µÃbc¡Ü1£®
¡÷ABCÃæ»ýs=$\frac{1}{2}bcsin\frac{¦Ð}{3}¡Ü\frac{{\sqrt{3}}}{4}$
µ±ÇÒ½öµ±b=c¼´¡÷ABCΪµÈ±ßÈý½ÇÐÎÊ±Ãæ»ý×î´óΪ$\frac{{\sqrt{3}}}{4}$¡­12£¨·Ö£©

µãÆÀ ±¾ÌâÒÔÏòÁ¿ÎªÔØÌ忼²éÁËÈý½Çº¯ÊýʽµÄ»¯¼ò¡¢ÓàÏÒ¶¨ÀíµÄÔËÓÃÒÔ¼°½âÈý½ÇÐΣ»ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2-bx+cÔÚx=1´¦È¡µÃ×îСֵ-1£®
£¨1£©½â²»µÈʽ|f£¨x£©|+|f£¨-x£©|¡Ý6|x|£»
£¨2£©ÈôʵÊýaÂú×ã|x-a|£¼1£¬ÇóÖ¤£º|f£¨x£©-f£¨a£©|£¼2|a|+3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®³ÉµÈ²îÊýÁеÄÈý¸öÕýÊýµÄºÍµÈÓÚ12£¬²¢ÇÒÕâÈý¸öÊý·Ö±ð¼ÓÉÏ1£¬4£¬11ºó³ÉΪµÈ±ÈÊýÁÐ{bn}ÖеÄb2£¬b3£¬b4£¬ÔòÊýÁÐ{bn}µÄͨÏʽΪ£¨¡¡¡¡£©
A£®bn=2nB£®bn=3nC£®bn=2n-1D£®bn=3n-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$C£º\left\{\begin{array}{l}x=5cos¦Á\\ y=3sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñ£¨4cos¦È-5sin¦È£©+40=0
£¨1£©Ð´³öÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇóÇúÏßCÉϵĵ㵽ֱÏßlµÄ×îС¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªa£¬b£¬c·Ö±ðΪÈñ½Ç¡÷ABCÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒ£¨a+b£©£¨sinA-sinB£©=£¨c-b£©sinC
£¨¢ñ£©Çó¡ÏAµÄ´óС£»
£¨¢ò£©Çósin£¨$\frac{¦Ð}{2}$+B£©-2sin2$\frac{C}{2}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=|2x+1|£¬g£¨x£©=|x-1|+a£®
£¨1£©µ±a=0ʱ£¬½â²»µÈʽf£¨x£©¡Ýg£¨x£©£»
£¨2£©ÈôÈÎÒâx¡ÊR£¬Ê¹µÃf£¨x£©¡Ýg£¨x£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Éè²»µÈʽ×é$\left\{\begin{array}{l}x+y-4¡Ü0\\ x-y¡Ý0\\ y¡Ý0\end{array}\right.$±íʾµÄÆ½ÃæÇøÓòΪD£¬ÔÚÇøÓòDÄÚËæ»úȡһ¸öµã£¬Ôò´Ëµãµ½×ø±êÔ­µãµÄ¾àÀë´óÓÚ2µÄ¸ÅÂÊÊÇ1$-\frac{¦Ð}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Å×ÎïÏßy=$\frac{1}{8}$x2µÄ½¹µãµ½×¼ÏߵľàÀëΪ£¨¡¡¡¡£©
A£®2B£®$\frac{1}{2}$C£®$\frac{1}{4}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨1+2sin2¦È£©=3£®
£¨¢ñ£©Ð´³öC1µÄÆÕͨ·½³ÌºÍC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Ö±ÏßC1ÓëÇúÏßC2ÏཻÓÚA£¬BÁ½µã£¬µãM£¨1£¬0£©£¬Çó||MA|-|MB||£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸