·ÖÎö £¨¢ñ£©Çó³öº¯ÊýµÄµ¼Êý£¬½â¹ØÓÚµ¼º¯ÊýµÄ²»µÈʽ£¬Çó³öº¯ÊýµÄµ¥µ÷Çø¼ä¼´¿É£»
£¨¢ò£©Çó³öº¯ÊýµÄµ¼Êý£¬¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐԵõ½¹ØÓÚaµÄ²»µÈʽ×飬½â³ö¼´¿É£»
£¨¢ó£©Çó³öº¯ÊýµÄµ¼Êý£¬µÃµ½·½³Ìx2-ax+1=0ÓÐÁ½¸ö²»ÏàµÈµÄÕýʵÊý¸ù£¬ÁîÆäΪm£¬n£¬¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐÔÅжϼ´¿É£®
½â´ð ½â£º£¨¢ñ£©$F£¨x£©=f£¨x£©g£¨x£©=\frac{1}{2}a{x^2}lnx£¨x£¾0£©$£¬
¡à${F^'}£¨x£©=axlnx+\frac{1}{2}ax=ax£¨lnx+\frac{1}{2}£©$£¬
ÓÉF¡ä£¨x£©£¾0µÃ$x£¾{e^{-\frac{1}{2}}}$£¬
ÓÉF¡ä£¨x£©£¼0£¬µÃ$0£¼x£¼{e^{-\frac{1}{2}}}$
¡àF£¨x£©ÔÚ$£¨0£¬{e^{-\frac{1}{2}}}]$Éϵ¥µ÷µÝ¼õ£¬ÔÚ$[{e^{-\frac{1}{2}}}£¬+¡Þ£©$Éϵ¥µ÷µÝÔö£¬
¡à$F{£¨x£©_{min}}=F£¨{e^{-\frac{1}{2}}}£©=-\frac{a}{4e}$£¬F£¨x£©ÎÞ¼«´óÖµ£®
£¨¢ò£©$G£¨x£©=\frac{1}{2}{x^2}-alnx+£¨a-1£©x$
¡à${G^'}£¨x£©=x-\frac{a}{x}+a-1=\frac{£¨x+a£©£¨x-1£©}{x}$
ÓÖ$a£¾0£¬\frac{1}{e}£¼x£¼e$£¬Ò×µÃG£¨x£©ÔÚ$£¨\frac{1}{e}£¬1]$Éϵ¥µ÷µÝ¼õ£¬ÔÚ[1£¬e£©Éϵ¥µ÷µÝÔö£¬
Ҫʹº¯ÊýG£¨x£©ÔÚ$£¨\frac{1}{e}£¬e£©$ÄÚÓÐÁ½¸öÁãµã£¬
Ðè$\left\{\begin{array}{l}G£¨\frac{1}{e}£©£¾0\\ G£¨1£©£¼0\\ G£¨e£©£¾0\end{array}\right.$£¬¼´$\left\{\begin{array}{l}\frac{1}{{2{e^2}}}+\frac{a-1}{e}+a£¾0\\ \frac{1}{2}+a-1£¼0\\ \frac{e^2}{2}+£¨a-1£©e-a£¾0\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}a£¾\frac{2e-1}{{2{e^2}+2e}}\\ a£¼\frac{1}{2}\\ a£¾\frac{{2e-{e^2}}}{2e-2}\end{array}\right.$£¬
¡à$\frac{2e-1}{{2{e^2}+2e}}£¼a£¼\frac{1}{2}$£¬¼´aµÄȡֵ·¶Î§ÊÇ$£¨\frac{2e-1}{{2{e^2}+2e}}£¬\frac{1}{2}£©$£®
£¨¢ó£©Èô0£¼a¡Ü2£¬¡ß${h^'}£¨x£©=\frac{{-£¨{x^2}-ax+1£©}}{x^2}$ÔÚ£¨0£¬+¡Þ£©ÉÏÂú×ãh¡ä£¨x£©¡Ü0£¬
¡àh£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬¡àh£¨x2£©-h£¨x1£©£¼0£®
¡àh£¨x2£©-h£¨x1£©²»´æÔÚ×î´óÖµ£¬Ôòa£¾2£¬
¡à·½³Ìx2-ax+1=0ÓÐÁ½¸ö²»ÏàµÈµÄÕýʵÊý¸ù£¬
ÁîÆäΪm£¬n£¬ÇÒ²»·ÁÉè0£¼m£¼1£¼n£¬Ôò$\left\{\begin{array}{l}m+n=a\\ mn=1\end{array}\right.$£¬
h£¨x£©ÔÚ£¨0£¬m£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨m£¬n£©Éϵ÷µÝÔö£¬ÔÚ£¨n£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬
¶Ô?x1¡Ê£¨0£¬1£©£¬ÓÐh£¨x1£©¡Ýh£¨m£©£»¶Ô?x2¡Ê£¨1£¬+¡Þ£©£¬ÓÐh£¨x2£©¡Üh£¨n£©£¬
¡à[h£¨x2£©-h£¨x1£©]max=h£¨n£©-h£¨m£©£®
¡à$M£¨a£©=h£¨n£©-h£¨m£©=£¨alnn-n+\frac{1}{n}£©-£¨alnm-m+\frac{1}{m}£©$=$aln\frac{n}{m}+£¨m-n£©+£¨\frac{1}{n}-\frac{1}{m}£©$£®
½«$a=m+n=\frac{1}{n}+n$£¬$m=\frac{1}{n}$´úÈëÉÏʽ£¬ÏûÈ¥a£¬m£¬
µÃ£º$M£¨a£©=£¨\frac{1}{n}+n£©ln{n^2}+2£¨\frac{1}{n}-n£©=2[£¨\frac{1}{n}+n£©lnn+£¨\frac{1}{n}-n£©]$£¬
¡ß$2£¼a¡Üe+\frac{1}{e}$£¬¡à$\frac{1}{n}+n¡Üe+\frac{1}{e}$£¬n£¾1£®
¾Ý$y=x+\frac{1}{x}$ÔÚx¡Ê£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬µÃn¡Ê£¨1£¬e]£¬
Éè$¦Õ£¨x£©=2£¨\frac{1}{x}+x£©lnx+2£¨\frac{1}{x}-x£©$£¬x¡Ê£¨1£¬e]£¬
${¦Õ^'}£¨x£©=2£¨-\frac{1}{x^2}+1£©lnx+2£¨\frac{1}{x}+x£©\frac{1}{x}+2£¨-\frac{1}{x^2}-1£©=2£¨1-\frac{1}{x^2}£©lnx$£¬x¡Ê£¨1£¬e]£¬
¡à¦Õ¡ä£¨x£©£¾0£¬¼´¦Õ£¨x£©ÔÚ£¨1£¬e]Éϵ¥µ÷µÝÔö£¬
¡à${[¦Õ£¨x£©]_{max}}=¦Õ£¨e£©=2£¨e+\frac{1}{e}£©+2£¨\frac{1}{e}-e£©=\frac{4}{e}$£¬
¡àM£¨a£©´æÔÚ×î´óֵΪ$\frac{4}{e}$£®
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ¡¢×îÖµÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°×ª»¯Ë¼Ï룬ÊÇÒ»µÀ×ÛºÏÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ææº¯Êý£¬ÔÚRÉϵ¥µ÷µÝÔö | |
| B£® | Ææº¯Êý£¬ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö | |
| C£® | żº¯Êý£¬ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö | |
| D£® | żº¯Êý£¬ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3022 | B£® | -3022 | C£® | 2017 | D£® | -2017 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{2}{7}$ | B£® | $\frac{1}{35}$ | C£® | $\frac{8}{35}$ | D£® | $\frac{7}{24}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com