7£®ÒÑÖªf £¨ x£©=$\frac{1}{2}$x2£¬g £¨ x£©=a ln x£¨a£¾0£©£®
£¨¢ñ£©Çóº¯Êý F £¨ x£©=f£¨x£©g£¨x£©µÄ¼«Öµ
£¨¢ò£©Èôº¯Êý G£¨ x£©=f£¨x£©-g£¨x£©+£¨a-1£©ÔÚÇø¼ä £¨$\frac{1}{e}$£¬e£© ÄÚÓÐÁ½¸öÁãµã£¬ÇóµÄȡֵ·¶Î§£»
£¨¢ó£©º¯Êý h£¨ x£©=g £¨ x £©-x+$\frac{1}{x}$£¬Éè x1¡Ê£¨0£¬1£©£¬x2¡Ê£¨1£¬+¡Þ£©£¬Èô h£¨ x 2£©-h£¨ x 1£©´æÔÚ×î´óÖµ£¬¼ÇΪ M £¨a£©£¬Ôòµ± a¡Üe+1$\frac{1}{e}$ʱ£¬M £¨a£© ÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÆä×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Çó³öº¯ÊýµÄµ¼Êý£¬½â¹ØÓÚµ¼º¯ÊýµÄ²»µÈʽ£¬Çó³öº¯ÊýµÄµ¥µ÷Çø¼ä¼´¿É£»
£¨¢ò£©Çó³öº¯ÊýµÄµ¼Êý£¬¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐԵõ½¹ØÓÚaµÄ²»µÈʽ×飬½â³ö¼´¿É£»
£¨¢ó£©Çó³öº¯ÊýµÄµ¼Êý£¬µÃµ½·½³Ìx2-ax+1=0ÓÐÁ½¸ö²»ÏàµÈµÄÕýʵÊý¸ù£¬ÁîÆäΪm£¬n£¬¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐÔÅжϼ´¿É£®

½â´ð ½â£º£¨¢ñ£©$F£¨x£©=f£¨x£©g£¨x£©=\frac{1}{2}a{x^2}lnx£¨x£¾0£©$£¬
¡à${F^'}£¨x£©=axlnx+\frac{1}{2}ax=ax£¨lnx+\frac{1}{2}£©$£¬
ÓÉF¡ä£¨x£©£¾0µÃ$x£¾{e^{-\frac{1}{2}}}$£¬
ÓÉF¡ä£¨x£©£¼0£¬µÃ$0£¼x£¼{e^{-\frac{1}{2}}}$
¡àF£¨x£©ÔÚ$£¨0£¬{e^{-\frac{1}{2}}}]$Éϵ¥µ÷µÝ¼õ£¬ÔÚ$[{e^{-\frac{1}{2}}}£¬+¡Þ£©$Éϵ¥µ÷µÝÔö£¬
¡à$F{£¨x£©_{min}}=F£¨{e^{-\frac{1}{2}}}£©=-\frac{a}{4e}$£¬F£¨x£©ÎÞ¼«´óÖµ£®
£¨¢ò£©$G£¨x£©=\frac{1}{2}{x^2}-alnx+£¨a-1£©x$
¡à${G^'}£¨x£©=x-\frac{a}{x}+a-1=\frac{£¨x+a£©£¨x-1£©}{x}$
ÓÖ$a£¾0£¬\frac{1}{e}£¼x£¼e$£¬Ò×µÃG£¨x£©ÔÚ$£¨\frac{1}{e}£¬1]$Éϵ¥µ÷µÝ¼õ£¬ÔÚ[1£¬e£©Éϵ¥µ÷µÝÔö£¬
Ҫʹº¯ÊýG£¨x£©ÔÚ$£¨\frac{1}{e}£¬e£©$ÄÚÓÐÁ½¸öÁãµã£¬
Ðè$\left\{\begin{array}{l}G£¨\frac{1}{e}£©£¾0\\ G£¨1£©£¼0\\ G£¨e£©£¾0\end{array}\right.$£¬¼´$\left\{\begin{array}{l}\frac{1}{{2{e^2}}}+\frac{a-1}{e}+a£¾0\\ \frac{1}{2}+a-1£¼0\\ \frac{e^2}{2}+£¨a-1£©e-a£¾0\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}a£¾\frac{2e-1}{{2{e^2}+2e}}\\ a£¼\frac{1}{2}\\ a£¾\frac{{2e-{e^2}}}{2e-2}\end{array}\right.$£¬
¡à$\frac{2e-1}{{2{e^2}+2e}}£¼a£¼\frac{1}{2}$£¬¼´aµÄȡֵ·¶Î§ÊÇ$£¨\frac{2e-1}{{2{e^2}+2e}}£¬\frac{1}{2}£©$£®
£¨¢ó£©Èô0£¼a¡Ü2£¬¡ß${h^'}£¨x£©=\frac{{-£¨{x^2}-ax+1£©}}{x^2}$ÔÚ£¨0£¬+¡Þ£©ÉÏÂú×ãh¡ä£¨x£©¡Ü0£¬
¡àh£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬¡àh£¨x2£©-h£¨x1£©£¼0£®
¡àh£¨x2£©-h£¨x1£©²»´æÔÚ×î´óÖµ£¬Ôòa£¾2£¬
¡à·½³Ìx2-ax+1=0ÓÐÁ½¸ö²»ÏàµÈµÄÕýʵÊý¸ù£¬
ÁîÆäΪm£¬n£¬ÇÒ²»·ÁÉè0£¼m£¼1£¼n£¬Ôò$\left\{\begin{array}{l}m+n=a\\ mn=1\end{array}\right.$£¬
h£¨x£©ÔÚ£¨0£¬m£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨m£¬n£©Éϵ÷µÝÔö£¬ÔÚ£¨n£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬
¶Ô?x1¡Ê£¨0£¬1£©£¬ÓÐh£¨x1£©¡Ýh£¨m£©£»¶Ô?x2¡Ê£¨1£¬+¡Þ£©£¬ÓÐh£¨x2£©¡Üh£¨n£©£¬
¡à[h£¨x2£©-h£¨x1£©]max=h£¨n£©-h£¨m£©£®
¡à$M£¨a£©=h£¨n£©-h£¨m£©=£¨alnn-n+\frac{1}{n}£©-£¨alnm-m+\frac{1}{m}£©$=$aln\frac{n}{m}+£¨m-n£©+£¨\frac{1}{n}-\frac{1}{m}£©$£®
½«$a=m+n=\frac{1}{n}+n$£¬$m=\frac{1}{n}$´úÈëÉÏʽ£¬ÏûÈ¥a£¬m£¬
µÃ£º$M£¨a£©=£¨\frac{1}{n}+n£©ln{n^2}+2£¨\frac{1}{n}-n£©=2[£¨\frac{1}{n}+n£©lnn+£¨\frac{1}{n}-n£©]$£¬
¡ß$2£¼a¡Üe+\frac{1}{e}$£¬¡à$\frac{1}{n}+n¡Üe+\frac{1}{e}$£¬n£¾1£®
¾Ý$y=x+\frac{1}{x}$ÔÚx¡Ê£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬µÃn¡Ê£¨1£¬e]£¬
Éè$¦Õ£¨x£©=2£¨\frac{1}{x}+x£©lnx+2£¨\frac{1}{x}-x£©$£¬x¡Ê£¨1£¬e]£¬
${¦Õ^'}£¨x£©=2£¨-\frac{1}{x^2}+1£©lnx+2£¨\frac{1}{x}+x£©\frac{1}{x}+2£¨-\frac{1}{x^2}-1£©=2£¨1-\frac{1}{x^2}£©lnx$£¬x¡Ê£¨1£¬e]£¬
¡à¦Õ¡ä£¨x£©£¾0£¬¼´¦Õ£¨x£©ÔÚ£¨1£¬e]Éϵ¥µ÷µÝÔö£¬
¡à${[¦Õ£¨x£©]_{max}}=¦Õ£¨e£©=2£¨e+\frac{1}{e}£©+2£¨\frac{1}{e}-e£©=\frac{4}{e}$£¬
¡àM£¨a£©´æÔÚ×î´óֵΪ$\frac{4}{e}$£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ¡¢×îÖµÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°×ª»¯Ë¼Ï룬ÊÇÒ»µÀ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁÐÓйØÓÚf£¨x£©=ln£¨1+|x|£©-$\frac{1}{1{+x}^{2}}$µÄÐÔÖʵÄÃèÊö£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Ææº¯Êý£¬ÔÚRÉϵ¥µ÷µÝÔö
B£®Ææº¯Êý£¬ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö
C£®Å¼º¯Êý£¬ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö
D£®Å¼º¯Êý£¬ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉϵÄÍÖÔ²µÄÒ»¸ö¶¥µã×ø±êΪ£¨0£¬1£©£¬ÆäÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÍÖÔ²ÉÏÒ»µãPÂú×ã¡ÏF1PF2=60¡ã£¬ÆäÖÐF1£¬F2ΪÍÖÔ²µÄ×óÓÒ½¹µã£¬Çó¡÷F1PF2µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýg£¨ x£©=e x+$\frac{a}{2}$x2£¬ÆäÖÐa¡ÊR£¬e=2.71828¡­Îª×ÔÈ»¶ÔÊýµÄ µ×Êý£¬f £¨ x£©ÊÇ g£¨ x£©µÄµ¼º¯Êý£®
£¨¢ñ£©Çó f£¨ x£© µÄ¼«Öµ£»
£¨¢ò£©Èôa=-1£¬Ö¤Ã÷£ºµ± x1¡Ùx2£¬ÇÒf £¨ x1 £©=f £¨ x2£© Ê±£¬x1+x2£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÔ²O£ºx2+y2=9£¬Ö±Ïßl1£ºx=6£¬Ô²OÓëxÖáÏཻÓÚµãA£¬B£¨Èçͼ£©£¬µãP£¨-1£¬2£©ÊÇÔ²OÄÚÒ»µã£¬µãQΪԲOÉÏÈÎÒ»µã£¨ÒìÓÚµãA¡¢B£©£¬Ö±ÏßAQÓël1ÏཻÓÚµãC£®
£¨1£©Èô¹ýµãPµÄÖ±Ïßl2ÓëÔ²OÏཻËùµÃÏÒ³¤µÈÓÚ4$\sqrt{2}$£¬ÇóÖ±Ïßl2µÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßBQ¡¢BCµÄбÂÊ·Ö±ðΪkBQ¡¢kBC£¬ÇóÖ¤£ºkBQ•kBCΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªÊýÁÐ{an}ÊǵȲîÊýÁУ¬a1=cot585¡ã£¬a6=11a1£¬ÉèSnΪÊýÁÐ{£¨-1£©nan}µÄǰnÏîºÍ£¬ÔòS2017=£¨¡¡¡¡£©
A£®3022B£®-3022C£®2017D£®-2017

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬Ä³Éú̬԰½«Ò»¿éÈý½ÇÐεØABCµÄÒ»½ÇAPQ¿ª±ÙΪˮ¹ûÔ°£¬ÒÑÖª½ÇAΪ120¡ã£¬AB£¬ACµÄ³¤¶È¾ù´óÓÚ200Ã×£¬ÏÖÔڱ߽çAP£¬AQ´¦½¨Î§Ç½£¬ÔÚPQ´¦Î§ÖñÀé°Ê£®
£¨1£©ÈôΧǽAP¡¢AQ×ܳ¤¶ÈΪ200Ã×£¬ÈçºÎ¿ÉʹµÃÈý½ÇÐεؿéAPQÃæ»ý×î´ó£¿
£¨2£©ÒÑÖªÖñÀé°Ê³¤Îª50$\sqrt{3}$Ã×£¬AP¶ÎΧǽ¸ß1Ã×£¬AQ¶ÎΧǽ¸ß2Ã×£¬Ôì¼Û¾ùΪÿƽ·½Ã×100Ôª£¬ÈôAP¡ÝAQ£¬ÇóΧǽ×ÜÔì¼ÛµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¡°¹ØÓÚxµÄ·½³Ìx2-mx+n=0ÓÐÁ½¸öÕý¸ù¡±ÊÇ¡°·½³Ìmx2+ny2=1µÄÇúÏßÊÇÍÖÔ²¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®½«¶þÏîʽ${£¨x+\frac{2}{{\sqrt{x}}}£©^6}$Õ¹¿ªÊ½¸÷ÏîÖØÐÂÅÅÁУ¬ÔòÆäÖÐÎÞÀíÏ²»ÏàÁڵĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{7}$B£®$\frac{1}{35}$C£®$\frac{8}{35}$D£®$\frac{7}{24}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸