精英家教网 > 高中数学 > 题目详情
等边三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为
2
,此时四面体ABCD外接球体积为
 
考点:球的体积和表面积
专题:
分析:三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它扩展为三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的体积即可.
解答: 解:根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,
三棱柱ABC-A1B1C1的中,底面边长为1,1,
2

由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,
球心到底面的距离为1,
底面中心到底面三角形的顶点的距离为:
2
2

∴球的半径为r=
(
3
2
)
2
+(
2
2
)
2
=
5
2

四面体ABCD外接球体积为:
3
r3
=
3
×(
5
2
)
3
=
5
5
π
6

故答案为:
5
5
π
6
点评:本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将长、宽分别为6和8的长方形ABCD沿对角线AC折起,得到四面体A-BCD,则四面体A-BCD的外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=8,直线l:y=x+b,若圆x2+y2=8上恰有3个点到直线l的距离都等于
2
,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从高三年级随机抽取100名学生,将他们的某次考试数学成绩绘制成频率分布直方图.由图中数据可知成绩在[130,140)内的学生人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二项式(2x-1)3=a0+a1x+a2x2+a3x3,则a1+2a2+3a3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知随机变量X服从正态分布,X的取值落在区间(-3,-1)内的概率和落在区间(3,5)内的概率是相等的,那么随机变量X的数学期望为(  )
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(2x-
π
6
)的一条对称轴为(  )
A、x=-
π
3
B、x=
π
3
C、x=
π
6
D、x=-
12

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log 
1
2
3),c=f(2 
2
),则a,b,c的大小关系是(  )
A、c<a<b
B、c<b<a
C、b<c<a
D、a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a、b、c分别为角A、B、C所对的边,且cos2B+cosB+cos(A-C)=1,则有(  )
A、a、c、b 成等比数列
B、a、c、b 成等差数列
C、a、b、c 成等差数列
D、a、b、c成等比数列

查看答案和解析>>

同步练习册答案