精英家教网 > 高中数学 > 题目详情
16.抛物线y2=-8x上到焦点距离等于6的点的坐标是(-4,$±4\sqrt{2}$).

分析 算出抛物线的焦点为F(-2,0),准线为x=2.设抛物线上点P(m,n)到焦点F的距离等于6,利用抛物线的定义可得-m+2=6,解得m=-4,进而利用抛物线方程解出n=±4$\sqrt{2}$,可得所求点的坐标.

解答 解:∵抛物线方程为y2=-8x,可得2p=8,$\frac{p}{2}$=2.
∴抛物线的焦点为F(-2,0),准线为x=2.
设抛物线上点P(m,n)到焦点F的距离等于6,
根据抛物线的定义,得点P到F的距离等于P到准线的距离,
即|PF|=-m+2=6,解得m=-4,
∴n2=8m=32,可得n=±4$\sqrt{2}$,
因此,点P的坐标为(-4,$±4\sqrt{2}$).
故答案为:(-4,$±4\sqrt{2}$).

点评 本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设G是△ABC的重心,P是该平面内-点,且满足$\overrightarrow{GP}$=3$\overrightarrow{GA}$+3$\overrightarrow{GB}$+2$\overrightarrow{GC}$,则△ABP与△ABC的面积之比是(  )
A.1:2B.1:3C.1:4D.1:5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a=20.3,b=log20.3,c=0.32,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线y=-2x2+x-$\frac{1}{8}$和点A($\frac{1}{4}$,$\frac{11}{8}$).过点F($\frac{1}{4}$,-$\frac{1}{8}$)任作直线,交抛物线于B,C两点.
(1)求△ABC的重心轨迹方程,并表示y=f(x)形式;
(2)若数列{xk},0<x1<$\frac{1}{2}$,满足xk+1=f(xk).求证:$\sum_{k=1}^{n}$xk+1k<$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示是一个几何体的三视图,则这个几何体的外接球的表面积为32π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+ax+3-a,a∈R.
(1)求a的取值范围,使y=f(x)在闭区间[-1,3]上是单调函数;
(2)当0≤x≤2时,函数y=f(x)的最大值是关于a的函数M(a),求M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:y=x+m-2的图象不经过第二象限,命题q:方程x2+$\frac{{y}^{2}}{1-m}$=1表示焦点在x轴上的椭圆.
(Ⅰ)试判断p是q的什么条件;
(Ⅱ)若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|-3<x<4},集合B={x|x<log29},则A∪B等于(  )
A.(-3,log29)B.(-3,4)C.(-∞,log29)D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC内角A,B,C的对边分别为a,b,c.
(1)若b是a与c的等比中项,求B的取值范围;
(2)若B=$\frac{π}{3}$,求sinA+sinC的取值范围.

查看答案和解析>>

同步练习册答案