分析 利用双曲线的渐近线以及点到直线的距离公式,考查方程然后求解即可.
解答 解:双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的一条渐近线交于P、Q两点,若$∠PAQ=\frac{π}{3}$,且$|PQ|=\frac{{\sqrt{3}}}{3}a$,
可得(a,0)到直线bx-ay=0的距离$d=\frac{|ab|}{{\sqrt{{a^2}+{b^2}}}}=\frac{{\sqrt{3}}}{2}•\frac{{\sqrt{3}}}{3}a$,
解得:$\frac{b}{a}=\frac{\sqrt{3}}{3}$,
双曲线的渐近线方程为:$y=±\frac{{\sqrt{3}}}{3}x$.
给答案为:$y=±\frac{{\sqrt{3}}}{3}x$.
点评 本题主要考查点到直线距离及双曲线的几何性质的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}x±y=0$ | B. | $x±\sqrt{3}y=0$ | C. | $\sqrt{15}x±y=0$ | D. | $x±\sqrt{15}y=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,-\frac{8}{5}}]∪[{3,+∞})$ | B. | $[{-1,\frac{1}{7}}]$ | C. | (-1,0]∪[3,+∞) | D. | (-∞,-1]∪[7,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com