精英家教网 > 高中数学 > 题目详情
8.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的一条渐近线交于P、Q两点,若$∠PAQ=\frac{π}{3}$,且$|PQ|=\frac{{\sqrt{3}}}{3}a$,则双曲线C的渐近线方程为$y=±\frac{{\sqrt{3}}}{3}x$.

分析 利用双曲线的渐近线以及点到直线的距离公式,考查方程然后求解即可.

解答 解:双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的一条渐近线交于P、Q两点,若$∠PAQ=\frac{π}{3}$,且$|PQ|=\frac{{\sqrt{3}}}{3}a$,
可得(a,0)到直线bx-ay=0的距离$d=\frac{|ab|}{{\sqrt{{a^2}+{b^2}}}}=\frac{{\sqrt{3}}}{2}•\frac{{\sqrt{3}}}{3}a$,
解得:$\frac{b}{a}=\frac{\sqrt{3}}{3}$,
双曲线的渐近线方程为:$y=±\frac{{\sqrt{3}}}{3}x$.
给答案为:$y=±\frac{{\sqrt{3}}}{3}x$.

点评 本题主要考查点到直线距离及双曲线的几何性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.一个三位数,个位、十位、百位上的数字依次为x、y、z,当且仅当y>x,y>z时,称这样的数为“凸数”(如243),现从集合{1,2,3,4}中取出三个不相同的数组成一个三位数,则这个三位数是“凸数”的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设点F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点,点F到渐近线的距离与双曲线的焦距之比为1:4,则双曲线的渐近线方程为(  )
A.$\sqrt{3}x±y=0$B.$x±\sqrt{3}y=0$C.$\sqrt{15}x±y=0$D.$x±\sqrt{15}y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某四棱锥和球的组合体的三视图如图所示,则该组合体的体积是$\frac{8+4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A(5,3),F是抛物线y2=4x的焦点,P是抛物线上的动点,则△PAF周长的最小值为(  )
A.9B.10C.11D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=ex+ax(a∈R)
( I)求f(x)的单调区间;
( II)已知常数a>-e,求证:对于?x∈(1,+∞),都有f(x)>(x-1)2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心在原点,F1,F2分别为左、右焦点,A,B分别是椭圆的上顶点和右顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果x,y满足$\left\{{\begin{array}{l}{2x-y+1≤0}\\{x-y+1≥0}\\{2x+y+5≥0}\end{array}}\right.$,则$z=\frac{x+2y-3}{x+1}$的取值范围是(  )
A.$({-∞,-\frac{8}{5}}]∪[{3,+∞})$B.$[{-1,\frac{1}{7}}]$C.(-1,0]∪[3,+∞)D.(-∞,-1]∪[7,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列图象可以作为函数f(x)=$\frac{x}{{x}^{2}+a}$的图象的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案