精英家教网 > 高中数学 > 题目详情
1.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(1)若直线AB过焦点F,求|AF|•|BF|的值;
(2)是否存在实数p,使得以线段AB为直径的圆过Q点?若存在,求出p的值;若不存在,说明理由.

分析 (1)求出p=4,可得抛物线方程,与直线y=2x+2联立消去y,设A(x1,y1),B(x2,y2),利用韦达定理,通过|AF||BF|=(y1+2)(y2+2)求解即可.
(2)假设存在,由抛物线x2=2py与直线y=2x+2联立消去y,设A(x1,y1),B(x2,y2),通过△>0,以及韦达定理推出P(2p,4p+2),Q(2p,2p),
方法一利用弦长公式$且|{PQ}|=\frac{1}{2}|{AB}|$,求出p.
方法二:通过$\overrightarrow{QA}•\overrightarrow{QB}=0$化简,结合韦达定理,求解p即可.

解答 解:(1)∵F(0,2),p=4,∴抛物线方程为x2=8y,…(1分)
与直线y=2x+2联立消去y得:x2-16x-16=0,设A(x1,y1),B(x2,y2)…(2分)
则x1+x2=16,x1x2=-16,…(3分)
∴|AF||BF|=(y1+2)(y2+2)=(2x1+4)(2x2+4)=80;…(6分)
(2)假设存在,由抛物线x2=2py与直线y=2x+2联立消去y得:x2-4px-4p=0.
设A(x1,y1),B(x2,y2),△>0,则x1+x2=4p,x1x2=-4p,…(7分)
P(2p,4p+2),Q(2p,2p),…(8分)
方法一∴|PQ|=2p+2,…(9分)
$又∵|{AB}|=\sqrt{5}•\sqrt{{{(4p)}^2}+16p}=4\sqrt{5}•\sqrt{{p^2}+p}$…(10分)
$且|{PQ}|=\frac{1}{2}|{AB}|$,
∴4p2+3p-1=0,
$p=\frac{1}{4}或p=-1(舍)$…(11分)
故存在p=$\frac{1}{4}$且满足△>0…(12分)
方法二:由$\overrightarrow{QA}•\overrightarrow{QB}=0$得:(x1-2p)(x2-2p)+(y1-2p)(y2-2p)=0…(9分)
即(x1-2p)(x2-2p)+(2x1+2-2p)(x2+2-2p)=0,…(10分)
∴$5{x_1}{x_2}+(4-6p)({x_1}+{x_2})+8{p^2}-8p+4=0$,…(11分)
代入得4p2+3p-1=0,$p=\frac{1}{4}或p=-1(舍)$.
故存在p=$\frac{1}{4}$且满足△>0,
∴p=$\frac{1}{4}$    …(12分)

点评 本题考查抛物线的简单性质以及直线与圆锥曲线的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1上一点A(2,$\sqrt{2}$),点B是椭圆上任意一点(异于点A),过点B作与直线OA平行的直线l交椭圆于点C,当直线AB、AC斜率都存在时,kAB+kAC=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\sqrt{2x-5}$的定义域为A,B={x|x2≥a2}.
(1)若a=2,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个如图所示的密闭容器,它的下部是一个底面半径为1m,高为2m的圆锥体,上半部是个半球,则这个密闭容器的表面积是多少?体积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某几何体的三视图如图所示,则其体积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的顶点都在球面上,这个几何体的三视图如图所示,该球的表面积是(  )
A.19πB.38πC.48πD.$\frac{{19\sqrt{38}}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是某几何体的三视图,则该几何体的体积为(  )
A.24B.36C.72D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这三个环节(可参加多个,也可都不参加)的情况及其概率如表所示:
参加纪念活动的环节数0123
概率$\frac{1}{6}$mn$\frac{1}{3}$
(Ⅰ)若m=2n,则从这60名抗战老兵中按照参加纪念活动的环节数分层抽取6人进行座谈,求参加纪念活动环节数为2的抗战老兵中抽取的人数;
(Ⅱ)某医疗部门决定从(1)中抽取的6名抗战老兵中随机抽取2名进行体检,求这2名抗战老兵中至少有1人参加纪念活动的环节数为3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个圆内有一个内接等边三角形,一动点在圆内运动,则此点落在等边三角形内部的概率为(  )
A.$\frac{3}{π}$B.$\frac{{3\sqrt{3}}}{4π}$C.$\frac{{\sqrt{3}}}{4π}$D.$\frac{{2\sqrt{3}}}{3π}$

查看答案和解析>>

同步练习册答案