| A. | $\frac{{\sqrt{3}}}{6}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 根据E为AC的中点,取AD的中点F,可得CD∥EF,则BE与CD所成角为∠BEF.正四面体ABCD中各棱长为2,可得BF,BE,EF的长度,利用余弦定理求解即可.
解答
解:由题意,E为AC的中点,取AD的中点F,
可得CD∥EF,
则BE与CD所成角即可转化为∠BEF.
∵ABCD是正四面体,各棱长为2.
∴ABC是等边三角形,E是中点,BE⊥AC,
同理:BF⊥AD,∴BF=BE=$\sqrt{3}$.
∵CD∥EF,
∴EF=1.
那么cos∠BEF=$\frac{E{F}^{2}+B{E}^{2}-B{F}^{2}}{2EF•BE}=\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{6}$.
即BE与CD所成角的余弦值为$\frac{\sqrt{3}}{6}$.
故选A.
点评 本题考查两条异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com