精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前n项和Sn,a1=
2
3
,且S2+
1
2
a2=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=log 
1
3
a
2
n
4
,求数列{
bn
an
}的前n项和Tn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:解:(Ⅰ)设等比数列{an}的公比为q,列出方程组求出q=
1
3
,代入通项公式求出通项;
(Ⅱ)由(Ⅰ)求出数列{
bn
an
}的通项公式,利用错位相减的方法求出数列{
bn
an
}的前n项和Tn
解答: 解:(Ⅰ)设等比数列{an}的公比为q,
由题意得
2
3
+
2
3
q+
1
2
2
3
q=1

解得q=
1
3

an=a1qn-1=
2
3
•(
1
3
)n-1=
2
3n

(Ⅱ)记bn=log 
1
3
a
2
n
4
=log332n=2n
an=
2
3n
bn
an
=n•3n

Tn=1×31+2×32+3×33+…+(n-1)×3n-1+n×3n
3Tn=1×32+2×33+3×34+…+(n-1)×3n+n×3n+1
由①-②得-2Tn=3+32+33+34+…+3n-n×3n+1=
3(1-3n)
1-3
-n•3n+1

=
3
2
(3n-1)-n•3n+1

=(
1
2
-n)•3n+1-
3
2

Tn=
3
4
+
1
4
(2n-1)•3n+1
点评:本题考查等比数列的通项公式;考查数列前n项和的方法;错位相减与裂项相消是常见的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=2|sinx|是(  )
A、最小正周期为2π的奇函数
B、最小正周期为2π的偶函数
C、最小正周期为π的奇函数
D、最小正周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx•cos(ωx+
π
6
)(ω>0)图象的两相邻对称轴间的距离为
π
2

(1)求ω的值;
(2)求函数f(x)在[0,
π
2
]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个内角A,B,C所对的边分别是a,b,c,向量
n
=(cosBcosC,sinBsinC-
1
2
),
m
=(1,1),
m
n

(Ⅰ)求A的大小;
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+5x-2>0的解集是M.
(1)若2∈M,求a的取值范围;
(2)若M={x|
1
2
<x<2},求不等式ax2-5x+a2-1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:一元二次不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立;命题Q:f(x)=
(4-a)x-2a   (x<1)
logax          (x≥1)
是增函数.若P且Q真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+ax2+bx(a,b∈R).
(Ⅰ)若曲线C:y=f(x)经过点P(1,2),曲线C在点P处的切线与直线x+2y-1=0垂直,求a,b的值;
(Ⅱ)若f(x)在区间(1,2)内存在两个不同的极值点,求证:0<a+b<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x2-ax+3a-1在(3,+∞)上是增函数,实数a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(-1)=
 

查看答案和解析>>

同步练习册答案