精英家教网 > 高中数学 > 题目详情
1.${∫}_{-1}^{1}$x(x-1)的值为(  )
A.2B.$\frac{2}{3}$C.-$\frac{1}{3}$D.-$\frac{1}{6}$

分析 根据定积分的计算法则计算即可.

解答 解:${∫}_{-1}^{1}$x(x-1)=($\frac{1}{3}$x3-$\frac{1}{2}$x2)|${\;}_{-1}^{1}$=($\frac{1}{3}$-$\frac{1}{2}$)-(-$\frac{1}{3}$-$\frac{1}{2}$)=$\frac{2}{3}$,
故选:B.

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数 f(x)=2015x2+lnx-x的极值点的个数是(  )
A.0B.1C.2D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求cos$\frac{8π}{3}$-tan$\frac{17π}{4}$+2sin(-$\frac{13π}{3}$)+tan(-$\frac{11π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sin2x+cos2x的值域是(  )
A.[-1,1]B.[-2,2]C.[-1,$\sqrt{2}$]D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sinx(sinx+cosx)
(1)求f(x)的最小正周期;
(2)求f(x)最值     
(3)求函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(x)=2x3-3x2-12x+5在区间[-2,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某超市一营业柜台销售某种商品,每件商品的成本为4元,并且每件商品需向超市交a(1≤a≤3)元的管理费,预计当诶吉安商品的售价为x(8≤x≤9)元时,一年的销售量为(10-x)2万件.
(1)求该营业柜台一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每年商品的售价为多少元时,该营业柜台一年的利润L最大,并求出L的最大值M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某学校要建造一个面积为10000平方米的运动场.如图,运动场是由一个矩形ABCD和分别以AD、BC为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.
(1)设半圆的半径OA=r(米),试建立塑胶跑道面积S与r的函数关系S(r),并求其定义域;
(2)由于条件限制r∈[30,40],问当r取何值时,运动场造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若二次函数y=x2+bx+c关于y轴对称,且方程的一个根为1.
(Ⅰ)求函数的解析式;
(Ⅱ)若g(x)=f(x)-kx在[-2,2]上的最小值是-9,求实数k的值.

查看答案和解析>>

同步练习册答案