精英家教网 > 高中数学 > 题目详情
17.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{113}{3}$B.35C.$\frac{104}{3}$D.$\frac{107}{4}$

分析 根据三视图可得,该几何体是一个直四棱柱,截取了两个小三棱柱,利用体积公式运算.

解答 解:根据三视图可得,该几何体是一个直四棱柱,截取了两个小三棱柱,
其体积V=${s}_{△ABC}×C{C}_{1}-2×\frac{1}{3}×{s}_{△ABC}×CE$=$\frac{1}{2}×4×4×5-2×\frac{1}{3}×\frac{1}{2}×4×4×1=\frac{104}{3}$.
故选:C

点评 三视图和立体图之间的转换,几何体的体积公式的应用,主要考查学生的空间想象能力和应用能力.属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在正四面体ABCD中,M,N分别是BC和DA的中点,则异面直线MN和CD所成角的余弦值为$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|2x+2|+|2x-4|.
(1)求不等式f(x)>8的解集;
(2)若存在x∈R,使不等式f(x)≤|2m-3|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设实数a∈(0,1),则函数f(x)=x2-(2a+1)x+a2+1有零点的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱柱ABC-A1B1C1中,D为BC的中点,∠BAC=90°,∠A1AC=60°,AB=AC=AA1=2.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)当BC1=4时,求直线B1C与平面ADC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点A($\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆C的方程;
(2)已知直线l过点M(0,2),且与椭圆C交于P、Q(异于椭圆C的顶点)两点
(i)求△OPQ面积的最大值(O为坐标点);
(ii)在y轴上是否存在定点N,使得$\overrightarrow{NP}$•$\overrightarrow{NQ}$为定值?如果存在,求出定点与定值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是(  )
A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}满足a2=2,an+2+(-1)n+1an=1+(-1)n(n∈N*),S n为数列{an}前n项和,S100=(  )
A.5100B.2550C.2500D.2450

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的体积为(  )
A.$\frac{16}{3}(π+1)$B.$\frac{8}{3}(2π+1)$C.8(2π+1)D.16(π+1)

查看答案和解析>>

同步练习册答案