14£®Îª´óÁ¦Ìᳫ¡°À÷Ðнڼ󣬷´¶ÔÀË·Ñ¡±£¬Ä³¸ßÖÐͨ¹ýËæ»úѯÎÊ100ÃûÐÔ±ð²»Í¬µÄѧÉúÊÇ·ñ×öµ½¡°¹âÅÌ¡±Ðж¯£¬µÃµ½Èç±íËùʾÁª±í¼°¸½±í£º
×ö²»µ½¡°¹âÅÌ¡±Ðж¯×öµ½¡°¹âÅÌ¡±Ðж¯
ÄÐ4510
Ů3015
P£¨K2¡Ýk0£©0.100.050.025
k02.7063.8415.024
¾­¼ÆË㣺K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$¡Ö3.03£¬²Î¿¼¸½±í£¬µÃµ½µÄÕýÈ·½áÂÛÊÇ£¨¡¡¡¡£©
A£®ÓÐ95%µÄ°ÑÎÕÈÏΪ¡°¸ÃѧÉúÄÜ·ñ×öµ½¹âÅÌÐе½ÓëÐÔ±ðÓйء±
B£®ÓÐ95%µÄ°ÑÎÕÈÏΪ¡°¸ÃѧÉúÄÜ·ñ×öµ½¹âÅÌÐе½ÓëÐÔ±ðÎ޹ء±
C£®ÓÐ90%µÄ°ÑÎÕÈÏΪ¡°¸ÃѧÉúÄÜ·ñ×öµ½¹âÅÌÐе½ÓëÐÔ±ðÓйء±
D£®ÓÐ90%µÄ°ÑÎÕÈÏΪ¡°¸ÃѧÉúÄÜ·ñ×öµ½¹âÅÌÐе½ÓëÐÔ±ðÎ޹ء±

·ÖÎö ͨ¹ý¹Û²âÖµ²ÎÕÕÁÙ½çÖµ±í¼´¿ÉµÃµ½ÕýÈ·½áÂÛ£®

½â´ð ½â£ºÓÉK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$¡Ö3.03£¬²Î¿¼¸½±í£¬
¡ß2.706£¼3.030£¼3.841£®
¡àÓÐ90%µÄ°ÑÎÕÈÏΪ¡°¸ÃѧÉúÄÜ·ñ×öµ½¹âÅÌÐж¯µ½ÓëÐÔ±ðÓйء±£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Ó㬸ø³öÁ˹۲âÖµ£¬Ö»Òª½øÐбȽϾͿÉÒÔ£¬´ËÌâÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Æ½ÐÐËıßÐÎABCDÖУ¬$\overrightarrow{AB}$•$\overrightarrow{BD}$=0£¬ÇÒ|$\sqrt{2}$$\overrightarrow{AB}$+$\overrightarrow{BD}}$|=2£¬ÑØBD½«ËıßÐÎÕÛÆð³ÉÖ±¶þÃæ½ÇA-BD-C£¬ÔòÈýÀâ×¶A-BCDÍâ½ÓÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®4¦ÐB£®16¦ÐC£®2¦ÐD£®$\frac{¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÊýÁÐ{an}ÖУ¬ÒÑÖªa1=1£¬an+1=2an+1£¬£¨ n¡ÊN*£©£®
£¨¢ñ£©ÇóÖ¤£º{an+1}ΪµÈ±ÈÊýÁУ»²¢Çó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èôbn=$\frac{n}{{{a_{n+1}}-{a_n}}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬SnΪÆäǰnÏîºÍ£¬ÇÒ¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐ4Sn=£¨an+1£©2£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôen¡ÝtSn¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýtµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬Ö±ÈýÀâÖùABC-A1B1C1ÖУ¬AA1=$\sqrt{2}$AB=$\sqrt{2}$BC=2£¬¡ÏABC=90¡ã£¬DΪCC1Öе㣬ÔòAB1ÓëÆ½ÃæABDËù³É½ÇµÄÕýÏÒÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{\sqrt{2}}{3}$C£®$\frac{2\sqrt{2}}{3}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðÊÇa¡¢b¡¢c£¬ÇÒc2-b2=ab£¬C=$\frac{¦Ð}{3}$£¬Ôò$\frac{sinA}{sinB}$µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÍÖÔ²$\frac{x^2}{9-m}+\frac{y^2}{m-3}$=1µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬µãPÔÚ¸ÃÍÖÔ²ÉÏ£®
£¨1£©ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨2£©Èôm=5£¬ÇÒ|PF1|=3£¬ÇóµãPµ½xÖáµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÊÔÅжϺ¯Êýy=$\sqrt{1-x}$ÔÚÆä¶¨ÒåÓòÉϵĵ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{\sqrt{x}}$µÄ¶¨ÒåÓòΪ¼¯ºÏA£¬¼¯ºÏB=x{x|ax-1£¼0£¬a¡ÊN*}£¬¼¯ºÏC={{x|log2x£¼-1}£®
£¨1£©ÇóA¡ÉB£»
£¨2£©ÈôC⊆£¨A¡ÉB£©£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸