精英家教网 > 高中数学 > 题目详情
3.试判断函数y=$\sqrt{1-x}$在其定义域上的单调性.

分析 根据函数的解析式求出定义域,利用单调性的定义证明函数y=f(x)=$\sqrt{1-x}$在定义域是单调减函数.

解答 解:由1-x≥0得,x≤1,
所以函数y=$\sqrt{1-x}$的定义域是(-∞,1];
且函数y=f(x)=$\sqrt{1-x}$在(-∞,1]上单调递减,证明如下:
设x1<x2≤1,
则f(x1)-f(x2)=$\sqrt{1{-x}_{1}}$-$\sqrt{1{-x}_{2}}$
=$\frac{(1{-x}_{1})-(1{-x}_{2})}{\sqrt{1{-x}_{1}}+\sqrt{1{-x}_{2}}}$
=$\frac{{x}_{2}{-x}_{1}}{\sqrt{1{-x}_{1}}+\sqrt{1{-x}_{2}}}$,
∵x1<x2≤1,∴x2-x1>0,$\sqrt{1{-x}_{1}}$+$\sqrt{1{-x}_{2}}$>0,
∴$\frac{{x}_{2}{-x}_{1}}{\sqrt{1{-x}_{1}}+\sqrt{1{-x}_{2}}}$>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
则函数y=f(x)=$\sqrt{1-x}$在(-∞,1]上是单调减函数.

点评 本题考查了函数的定义域求法,以及根据单调性定义进行证明,即取值、作差、变形、定号、下结论,对于解析式中出现根号往往需要进行有理化

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点(2,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为大力提倡“厉行节俭,反对浪费”,某高中通过随机询问100名性别不同的学生是否做到“光盘”行动,得到如表所示联表及附表:
做不到“光盘”行动做到“光盘”行动
4510
3015
P(K2≥k00.100.050.025
k02.7063.8415.024
经计算:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$≈3.03,参考附表,得到的正确结论是(  )
A.有95%的把握认为“该学生能否做到光盘行到与性别有关”
B.有95%的把握认为“该学生能否做到光盘行到与性别无关”
C.有90%的把握认为“该学生能否做到光盘行到与性别有关”
D.有90%的把握认为“该学生能否做到光盘行到与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.由a,a2组成的集合中含有两个元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.lg2•log210的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在“市长峰会”期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的接待排班种数为C144C104C64(用式子表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2 011)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知不等式x2-2x-3<0的整数解构成等差数列{an}的前三项,则数列的第四项为(  )
A.3B.-1C.2D.3或-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若sin(α+β)=$\frac{4}{5}$,sin(α-β)=-$\frac{12}{13}$,
(1)求$\frac{tanα}{tanβ}$的值;
(2)若$\frac{π}{2}$<α+β<π,-$\frac{π}{2}$<α-β<$\frac{π}{2}$,求cos2α,sin2α.

查看答案和解析>>

同步练习册答案