精英家教网 > 高中数学 > 题目详情
下列命题中正确的是(  )
A.函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称
B.若f(x)为奇函数,f(1-x)为偶函数,则f(x+2)为奇函数
C.不是常值函数的周期函数都有最小正周期
D.f(x)的周期为T,则f(
x
3
)的周期为
T
3
A.函数y=f(1+x)与函数y=f(1-x)的图象关于直线y轴对称.所以A错误.
B.因为f(1-x)为偶函数,所以f(1+x)=f(1-x)=-f(x-1),所以f(x+2)=-f(x),即f(x+4)=f(x),所以函数的周期是4.
所以f(x+2)=f(x+2-4)=f(x-2),要使函数f(x+2)为奇函数,则f(-x+2)=-f(x+2)=-f(x-2),即f(x+2)=f(x-2),
所以f(x+2)为奇函数,所以B正确.
C.对于函数D(x)=
1,x∈Q
0,x∉Q
,是周期函数,但没有最小正正确,所以C错误.
D.设f(x)=sinx,则周期T=2π,f(
x
3
)=sin
x
3
,此时周期为
1
3
=6π=3T
,所以D错误.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

下列命题:
①“若ma2>na2,则m>n”的逆否命题;
②“若A与B是互斥事件,则A与B是对立事件”的逆命题;
③“在等差数列{an}中,若m+k=p+h,则am+ak=ap+ah”的否命题;
④“若|2x+2|<a的必要不充分条件是|x+1|<b(a>0,b>0),则2b<a”的逆否命题.
其中是假命题个数有(  )
A.0B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出定义:若m-
1
2
<x≤m+
1
2
(m∈Z),则称m为离实数x最近的整数,记作{x}=m,在此基础上给出下列关于函数f(x)=|x-{x}|的五个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
]

②函数y=f(x)是周期函数,最小正周期为1;
③函数y=f(x)在[-
1
2
1
2
]
上是增函数;
④函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称;
⑤函数y=f(x)的图象关于点(k,0)(k∈Z)对称.
其中正确的命题有(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①若A,B是锐角△ABC的两内角,则有sinA>cosB;
②在同一坐标系中,函数y=sinx与y=lgx的交点个数为2个;
③如果
sinα-2cosα
3sinα+5cosα
=-5,那么tanα的值为-
23
16

④存在实数x,使得等式sinx+cosx=
3
2
成立;
⑤若0<x≤1,则
sin2x
x2
sinx
x

其中正确的命题为______(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题“若x=了,则x-8x+1了=0”,那么它的逆命题、否命题与逆否命题这三个命题中,真命题有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,二次函数f(x)=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(-1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2-4ac>0.其中正确的结论是(  )
A.①④B.①③C.②④D.①②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  )
A.若命题p:“?x0∈R,x02+x0+1<0”,则¬p:“?x0∈R,x02+x0+1≥0”
B.命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为“若方程x2+x-m=0无实根,则m<0”
C.已知f(x)是定义在R上的偶函数,且以4为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下命题正确的是______.
①把函数y=3sin(2x+
π
3
)
的图象向右平移
π
6
个单位,得到y=3sin2x的图象;
②一平面内两条直线的方程分别是f1(x,y)=0,f2(x,y)=0,它们的交点是P(x0,y0),则方程f1(x,y)+f2(x,y)=0表示的曲线经过点P;
③由“若ab=ac(a≠0,a,b,c,∈R),则b=c”.类比“若
a
b
=
a
c
(
a
0
a
b
c
为三个向量),则
b
=
c

④若等差数列{an}前n项和为sn,则三点(10,
s10
10
)
,(100,
s100
100
),(110,
s110
110
)共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

命题“”的否定是     

查看答案和解析>>

同步练习册答案