精英家教网 > 高中数学 > 题目详情
3.如图,已知D是△ABC边BC上一点.
(1)若B=45°,且AB=DC=1,求△ADC的面积;
(2)当∠BAC=90°时,若$BD:DC:AC=2:1:\sqrt{3}$,且$AD=4\sqrt{2}$,求DC的长.

分析 (  )1)过A点作AE⊥BC,交BC于点E,由已知可求AE,进而利用三角形面积公式即可计算得解.
(2)设CD=x,则BD=2x,AC=$\sqrt{3}$x,可求BC=3x,进而利用余弦定理,三角函数的定义建立方程即可解得DC的值.

解答 解:(1)过A点作AE⊥BC,交BC于点E,
∵B=45°,且AB=DC=1,
则AE=ABsinB=$\frac{{\sqrt{2}}}{2}$,
可得:S△ADC=$\frac{1}{2}$DC•AE=$\frac{1}{2}$×1×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{4}$,
(2)设CD=x,则BD=2x,AC=$\sqrt{3}$x,
∴BC=CD+BD=3x,
∴cos∠ACB=$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$
在△ADC中由余弦定理可得AD2=AC2+CD2-2AC•CD•COS∠ACB,
即(4$\sqrt{2}$)2=3x2+x2-2×$\sqrt{3}$x•x•$\frac{\sqrt{3}}{3}$,
解得x=4,
即DC=4

点评 本题主要考查了三角形的面积公式,余弦定理在解三角形中的应用,考查了转化思想和数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$(1,\frac{3}{2})$,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过点(1,0)的直线l与椭圆C交于两点A,B,若$\overrightarrow{OA}•\overrightarrow{OB}=-2$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=6{cos^2}x-2\sqrt{3}sinxcosx$+2.
(1)求f(x)的最小正周期和值域;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(B)=2.求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知定义在R上的偶函数f(x)满足f(x+4)=f(x)+f(2),且0≤x≤2时,f(x)=$\left\{\begin{array}{l}-12{x^2}+12x,x∈[{0,1}]\\-4{x^2}+12x-8,x∈(1,2]\end{array}$,若函数g(x)=f(x)-a|x|(a≠0),在区间[-3,3]上至多有9个零点,至少有5个零点,则a的取值范围是$[20-8\sqrt{6},12-8\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x2+bx-3(b∈R)的零点个数是(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.幂函数f(x)=xn的图象过点$(2,\sqrt{2})$,则f(9)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(1-x)(1+2x)5展开式按x的升幂排列,则第3项的系数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=ax-sinx.
(1)若函数f(x)在R上是单调增函数,求实数a的取值范围;
(2)当a=$\frac{1}{2}$时,求函数f(x)在区间[0,$\frac{π}{2}$]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果在犯错误的概率不超过0.05的前提下说事件A和B有关系,那么具体计算出的数据是(  )
A.χ2≥3.841B.χ2≤3.841C.χ2≥6.635D.χ2≤6.635

查看答案和解析>>

同步练习册答案