精英家教网 > 高中数学 > 题目详情
如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点为F(1,0),且过点(
2
6
2
).
(1)求椭圆C的方程;
(2)已知A,B为椭圆上不同的两点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求点M的轨迹方程.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:(1)把点(
2
6
2
)代入椭圆方程结合c=1及a2+b2=c2求得a2,b2的值,则椭圆方程可求;
(2)设出A,B的坐标,写出直线AF和BN的方程,联立求得M点的坐标,在把A的坐标用M的坐标表示,代入椭圆方程后得M的轨迹方程.
解答: 解:(1)∵椭圆C:
x2
a2
+
y2
b2
=1过点(
2
6
2
),且焦点为F(1,0),
c=1
a2+b2=c2
2
a2
+
3
2b2
=1
,解得:a2=4,b2=3,
则椭圆C的方程为
x2
4
+
y2
3
=1

(2)∵F(1,0)、N(4,0),设A(m,n),则B(m,-n)n≠0,
则直线AF的方程为:y=
n
m-1
(x-1)

BN的方程分别为:y=
n
4-m
(x-4)

则联立方程解得点M的坐标为x0=
5m-8
2m-5
y0=
3n
2m-5

m=
5x0-8
2x0-5
n=
3y0
2x0-5

将点A(m,n)代入椭圆C中可得
x02
4
+
y02
3
=1

∵m≠±2,
∴x0≠±2.
即点M的轨迹方程为
x2
4
+
y2
3
=1
.(x≠±2).
点评:本题主要考查椭圆方程的求法,考查直线与圆锥曲线关系问题,训练了代入法求曲线的轨迹方程,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x2+a)(a>0)
(1)若a=2,求f(x)在点(1,f(1))处的切线方程.
(2)令g(x)=f(x)-
2
3
x3,求证:在区间(0,
1
a
)上,g(x)存在唯一极值点.
(3)令h(x)=
f′(x)
2x
,定义数列{xn}:x1=0,xn+1=h(xn).当a=2且xk∈(0,
1
2
](k=2,3,4…)时,求证:对于任意的m∈N*,恒有|xm+k-xk|<
1
3•4k-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2+3a|x-1|,a∈R.
(1)若a=0,当x∈[-1,3]时,求函数f(x)的最小值;
(2)设-1<a<1,且函数f(x)有两个极值点x1,x2,若|x1-x2|=
3
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d>0,前n项和为Sn,且满足前三项的和为9,前三项的积为15.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=
1
Sn+n
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,AC,BD交于点O,A1O⊥平面ABCD,A1A=BD=2,AC=2
2

(1)证明:A1C⊥平面BB1D1D;
(2)求三棱锥A-C1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d≠0,首项a1=3,且a1、a4、a13成等比数列,设数列{an}的前n项和为Sn(n∈N+).
(1)求an和Sn
(2)若bn=
an(Sn≤3an)
1
Sn
(Sn>3an)
,数列{bn}的前n项和Tn.求证:3≤Tn<24
11
60

查看答案和解析>>

科目:高中数学 来源: 题型:

现有一个寻宝游戏,规则如下:在起点P处有A、B、C三条封闭的单向线路,走完这三条线路所花费的时间分别为10分钟、20分钟、30分钟,游戏主办方将宝物放置在B线路上(参赛方并不知晓),开始寻宝时参赛方在起点处随机选择路线顺序,若没有寻到宝物,重新回到起点后,再从没有走过的线路中随机选择路线继续寻宝,直到寻到宝物并将其带回至P处,期间所花费的时间记为X.
(1)求X≤30分钟的概率;
(2)求X的分布列及EX的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-1.
(1)判断f(x)的单调性,并用定义法证明;
(2)求f(x)在[0,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在区间[m,n](m<n),当定义域是[m,n]时,f(x)的值域也是[m,n],则称f(x)在[m,n]上是“和谐函数”,且[m,n]为该函数的“和谐区间”,现有以下命题:
①f(x)=(x-1)2在[0,1]上是“和谐函数”;
②恰有两个不同的正数a使f(x)=(x-1)2在[0,a]上是“和谐函数”;
③f(x)=
1
x
+k对任意的k∈R都存在“和谐区间”;
④存在区间[m,n](m<n),使f(x)=sinx在[m,n]上是“和谐函数”;
⑤由方程x|x|+y|y|=1确定的函数y=f(x)必存在“和谐区间”.
所有正确的命题的符号是
 

查看答案和解析>>

同步练习册答案