精英家教网 > 高中数学 > 题目详情
18.已知圆O:x2+y2=1的弦AB长为$\sqrt{2}$,若线段AP是圆O的直径,则$\overrightarrow{AP}•\overrightarrow{AB}$=2;若点P为圆O上的动点,则$\overrightarrow{AP}•\overrightarrow{AB}$的取值范围是[1-$\sqrt{2}$,$\sqrt{2}+1$].

分析 由题意画出图形并求出∠BAP=45°,代入数量积公式求得$\overrightarrow{AP}•\overrightarrow{AB}$;求出A、B的坐标,设出P的坐标,可得$\overrightarrow{AP}、\overrightarrow{AB}$的坐标,把$\overrightarrow{AP}•\overrightarrow{AB}$转化为三角函数求最值.

解答 解:如图,

由题意可得,∠BAP=45°,
∴$\overrightarrow{AP}•\overrightarrow{AB}$=$|\overrightarrow{AB}||\overrightarrow{AP}|cos45°=\sqrt{2}×2×\frac{\sqrt{2}}{2}=2$;
由题意得A(1,0),B(0,1),设P(cosθ,sinθ),
则$\overrightarrow{AB}=(-1,1)$,$\overrightarrow{AP}=(cosθ-1,sinθ)$,
∴$\overrightarrow{AP}•\overrightarrow{AB}$=-cosθ+1+sinθ=sinθ-cosθ+1=$\sqrt{2}sin(θ-\frac{π}{4})+1$.
∴$\overrightarrow{AP}•\overrightarrow{AB}$的取值范围是[1-$\sqrt{2}$,$\sqrt{2}+1$].
故答案为:2;[1-$\sqrt{2}$,$\sqrt{2}+1$].

点评 本题考查平面向量的数量积运算,体现了数学转化思想方法与数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若某函数模型相对一组数据的残差平方和为8,其相关指数为0.95,则总偏差平方和为160.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(m-1)x2+x+1,(m∈R).
(1)函数h(x)=f(tanx)-2在[0,$\frac{π}{2}$)上有两个不同的零点,求m的取值范围;
(2)当1<m<$\frac{3}{2}$时,f(cosx)的最大值为$\frac{9}{4}$,求f(x)的最小值;
(3)函数g(x)=f(cosx)+f(sinx),对于任意x∈[-$\frac{π}{2}$,0],存在t∈[1,4],使得g(x)≥f(t),试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知矩形ABCD的顶点都在半径为R的球O的球面上,AB=6,BC=2$\sqrt{3}$,棱锥O-ABCD的体积为8$\sqrt{3}$,则球O的表面积为(  )
A.B.16πC.32πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,A、B、C的对边分别为a、b、c,求证:对于任意实数θ,恒有acos(θ-B)+bcos(θ+A)=ccosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知三棱锥A-BCD的所有顶点都在同一个球面上,△BCD是边长为2的正三角形,AC为球O的直径,若该三棱锥的体积为$\frac{{4\sqrt{2}}}{3}$,则该球O的表面积(  )
A.64πB.48πC.32πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校将举行秋季体育文化节,为了解该校高二学生的身体状况,抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为13,若全校男、女生比例为4:3,则全校抽取学生数为(  )
A.91B.80C.45D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρ=2sinθ+2cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=3+t}\\{y=4+2t}\end{array}\right.$(t为参数,t∈R).
(1)求曲线C和直线l的普通方程;
(2)设直线l和曲线C交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正方体ABCD-A1B1C1D1中,M,N分别是棱A1D,DD1的中点,则异面直线CM与AN所成角的大小是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步练习册答案