精英家教网 > 高中数学 > 题目详情
12.如图的程序框图的功能是:给出以下十个数:15,19,80,53,95,73,58,27,60,39,把大于60的数找出来,则框图中的①②应分别填入的是(  )
A.x>60?,i=i+1B.x<60?,i=i+1C.x>60?,i=i-1D.x<60?,i=i-1

分析 流程图的功能是把大于60的数找出来,而流程图中可知当满足条件时输出x,故判断框中应填x>60,处理框用来计数的,从而得到处理框中应填.

解答 解:把大于60的数找出来,根据流程图可知当满足条件时输出x,故判断框中应填x>60,
处理框用来计数的,则处理框应填i=i+1.
故选:A.

点评 本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,该题型比较新颖,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.某市派六名干部到该市A,B,C三所乡镇考察,每乡镇去两人,但干部甲不能去A地,干部乙不能去B地,其他四人不受限制,共有多少种不同的分配方案78.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点到一条渐近线的距离不大于$\frac{{\sqrt{5}}}{3}c$(c为双曲线的半焦距长),则双曲线离心率的取值范围为(  )
A.$[\frac{{3\sqrt{5}}}{2},+∞)$B.$(1,\frac{3}{2}]$C.$(1,\frac{{3\sqrt{5}}}{2}]$D.$[\frac{3}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过定点P(1,2)的直线l交双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$于A,B两点,线段AB的中点坐标为(2,4),双曲线的左顶点到右焦点的距离为$\sqrt{5}+1$.求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,圆O的直径AB与弦CD交于点E,且E为OA的中点,若OA=2,∠BCD=30°,则线段CE的长为(  )
A.1B.$\frac{3\sqrt{5}}{5}$C.$\frac{\sqrt{6}}{2}$D.$\frac{3\sqrt{7}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,点E是左顶点,过F且垂直于x轴的直线与双曲线交于点A,若tan∠AEF<1,则双曲线的离心率e的取值范围是(  )
A.(1,+∞)B.(1,2)C.(1,1+$\sqrt{2}$)D.(2,2+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.证明tan3°是无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平行四边形ABCD中,AB=1,BC=2,∠CBA=$\frac{π}{3}$,ABEF为直角梯形,BE∥AF,∠BAF=$\frac{π}{2}$,BE=2,AF=3,平面ABCD⊥平面ABEF.
(1)求证:AC⊥平面ABEF;
(2)求三棱锥D-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系内有点P(a,b)(a≠b),且a,b∈{1,2,3,4,5,6},当P在圆x2+y2=25内部,求点P的个数.(不要用列举法)

查看答案和解析>>

同步练习册答案