精英家教网 > 高中数学 > 题目详情

【题目】某校高三文科500名学生参加了5月份的模拟考试,学校为了了解高三文科学生的数学、语文情况,利用随机数表法从中抽取100名学生的成绩进行统计分析,抽出的100名学生的数学、语文成绩如下表:

(1)将学生编号为:001,002,003,……,499,500.若从第5行第5列的数开始右读,请你依次写出最先抽出的5个人的编号(下面是摘自随机数表的第4行至第7行)

(2)若数学的优秀率为,求的值;

(3)在语文成绩为良好的学生中,已知,求数学成绩“优”比“良”的人数少的概率.

【答案】(1)编号依次为:385,482,462,231,309;(2);(3).

【解析】试题分析:(1)因为编号为3位,所以依次从第5行第5列读三位的数字,其中的依次读出来,前5个就是所求;(2)数学的优秀率为35%,即 ,以及所有的人数为100,求 ;(3)根据总人数为100,求得,其中 的基本事件为12种,若其中数学的“优”比“良”少,需满足 ,计算其基本事件的个数,最后相除就是结果.

试题解析:(1)编号依次为:385,482,462,231,309.

(2)由,因为,得.

(3)由题意,且,所以满足条件的共12种,且每组出现都是等可能的.

记“数学成绩‘优’比‘良’的人数少”为事件,则事件包含的基本事件有共5种,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1 , S2 , S3 , …,S10 , 则S1+S2+S3+…+S10=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的最小值;

(2)当时,若对,使得成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列是递增数列,其前项和为,且

1)求数列的通项公式;

2 ,求数列 的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P的坐标为(x1 , y1),点Q的坐标为(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.

(1)已知点A的坐标为(1,0),
①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为 ,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数),记的导函数为

(1)证明:当时,上单调递增;

(2)若处取得极小值,求的取值范围;

(3)设函数的定义域为,区间,若上是单调函数,

则称上广义单调.试证明函数上广义单调.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C所对边分别为a,b,c,a=2,B=45°,①当b= 时,三角形有个解;②若三角形有两解,则b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx+2cos(x+ )cos(x﹣ ).
(1)求f(x)的单调递减区间;
(2)设α∈(0,π),f( )= ,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . 

(Ⅰ)当时,求函数的极值;

(Ⅱ)当时,讨论函数单调性;

(Ⅲ)是否存在实数,对任意的 ,且,有恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案