精英家教网 > 高中数学 > 题目详情
1.随机变量ξ服从正态分布N(40,82),若P(ξ<30)=0.3,则P(ξ<50)=(  )
A.0.7B.0.4C.0.5D.0.6

分析 利用正态分布的性质,求解结果即可.

解答 解:随机变量ξ服从正态分布N(40,82),对称轴为:ξ=40.
若P(ξ<30)=0.3,可得P(ξ>50)=0.3,
则P(ξ<50)=1-P(ξ>50)=0.7.
故选:A.

点评 本题考查正态分布的性质,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.a1,a2,…,an是两两互不相同正整数.求证:1+$\frac{1}{2}$+…+$\frac{1}{n}$≤a1+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{n}}{{n}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在极坐标系中,已知点A(1,$\frac{π}{2}$),点P是曲线ρsin2θ=4cosθ上任意一点,设点P到直线ρcosθ+1=0的距离为d,则|PA|+d的最小值为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过点P(-1,3)且平行于直线x-2y+3=0的直线方程为(  )
A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(2+a)x+a2lnx,g(x)=x2+2x+b(a,b∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同,若a>0,试建立b关于a的函数关系式,并求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x-2|+|x-a|,g(x)=|x|.
(1)若a=2时,解不等式f(g(x))≥2;
(2)如果?x∈R,f(x)≥2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若G为△ABC的重心,则(  )
A.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$B.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$D.$\overrightarrow{AG}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,直线l过点P (3,$\sqrt{5}$)且倾斜角为$\frac{3}{4}$π.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(Ⅰ)求直线l的一个参数方程和圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B,求|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.小张同学计划在期末考试结束后,和其他小伙伴一块儿外出旅游,增长见识,旅行社为他们提供了省内的都江堰、峨眉山、九寨沟和省外的丽江古都,黄果树瀑布和凤凰古城这六个景点,由于时间和距离等原因,只能从中任取4个景点进行参观,其中黄果树瀑布不能第一个参观,且最后参观的是省内景点,则不同的旅游顺序有(  )
A.54种B.72种C.120种D.144种

查看答案和解析>>

同步练习册答案