精英家教网 > 高中数学 > 题目详情
1.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,P为椭圆C上的一点,且位于第一象限,直线PO,PF分别交椭圆C于M,N两点.若△POF为正三角形,则直线MN的斜率等于(  )
A.$\sqrt{3}$-1B.$\sqrt{3}$-$\sqrt{2}$C.2-$\sqrt{2}$D.2-$\sqrt{3}$

分析 由于|OF|为半焦距c,利用等边三角形性质,即可得点P的一个坐标,PF方程为:y=-$\sqrt{3}$(x-c)代入椭圆标准方程即可得N坐标,再用斜率公式,求解

解答 解:∵椭圆上存在点P使△AOF为正三角形,设F为左焦点,|OF|=c,P在第一象限,
∴点P的坐标为($\frac{c}{2},\frac{\sqrt{3}}{2}c$)代入椭圆方程得,$\frac{{c}^{2}}{4{a}^{2}}+\frac{{3c}^{2}}{4{b}^{2}}=1$.又因为a2=b2+c2,得到$c=(\sqrt{3}-1)a$.
椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的方程可设为:2$\sqrt{3}$x2+(4+2$\sqrt{3}$)y2=(2$\sqrt{3}$+3)c2…①
PF方程为:y=-$\sqrt{3}$(x-c)…②
由①②得N(($\sqrt{3}-\frac{1}{2}$)c,$\frac{3\sqrt{3}-6}{2}c$),
M,P两点关于原点对称,∴M(-$\frac{c}{2},-\frac{\sqrt{3}}{2}$c)
直线MN的斜率等于$\frac{\frac{3\sqrt{3}-6}{2}+\frac{\sqrt{3}}{2}}{\sqrt{3}}=2-\sqrt{3}$.
故选:D

点评 本题考查了椭圆与直线的位置关系,计算量较大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设点P(x,y)是不等式组$\left\{\begin{array}{l}{y≥0}\\{x-2y+1≥0}\\{x+y≤3}\end{array}\right.$,所表示的平面区域内的任意一点,向量$\overrightarrow{m}$=(1,1),$\overrightarrow{n}$=(2,1),点O是坐标原点.若向量$\overrightarrow{OP}$=λ$\overrightarrow{m}$+μ$\overrightarrow{n}$(λ,μ∈R),则λ-μ的取值范围是(  )
A.[-$\frac{3}{2}$,$\frac{2}{3}$]B.[-6,2]C.[-1,$\frac{7}{2}$]D.[-4,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某程序框图如图所示,其中t∈Z,该程序运行后输出的k=2,则t的最大值为(  )
A.11B.2057C.2058D.2059

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1和F2分别是椭圆C:$\frac{{x}^{2}}{2}$+y2=1的左焦点和右焦点,点P(x0,y0)是椭圆C上一点,切满足∠F1PF2≥60°,则x0的取值范围是(  )
A.[-1,1]B.[-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$]C.[1,$\sqrt{2}$]D.[$\frac{2\sqrt{3}}{3}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司要招聘甲、乙两类员工共150人,该公司员工的工资由基础工资组成.其中甲、乙两类员工每人每月的基础工资分别为2千元和3千元,甲类员工每月的人均绩效工资与公司月利润成正比,比例系数为a(a>0),乙类员工每月的绩效工资与公司月利润的平方成正比,比例系数为b(b>0).
(Ⅰ)若要求甲类员工的人数不超过乙类员工人数的2倍,问甲、乙两类员工各招聘多少人时,公司每月所付基础工资总额最少?
(Ⅱ)若该公司每月的利润为x(x>0)千元,记甲、乙两类员工该月人均工资分别为w千元和w千元,试比较w和w的大小.(月工资=月基础工资+月绩效工资)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1(-c,0),F2(c,0)为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两个焦点,点P(不在x轴上)为椭圆上的一点,且满足${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}={c^2}$,则椭圆的离心率的取值范围是(  )
A.$[{\frac{{\sqrt{3}}}{3},1})$B.$[{\frac{1}{3},\frac{1}{2}}]$C.$[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}})$D.$({0,\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设ϕ(x)是定义在[m,n]上的函数,若存在r∈(m,n),使得ϕ(x)在[m,r]上单调递增,在[r,n]上单调递减,则称ϕ(x)为[m,n]上的F函数.
(1)已知$ϕ(x)=\frac{x+a}{e^x}$为[1,2]上的F函数,求a的取值范围;
(2)设$ϕ(x)=px-(\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\frac{{p{x^5}}}{5})$,其中p>0,判断ϕ(x)是否为[0,p]上的F函数?
(3)已知ϕ(x)=(x2-x)(x2-x+t)为[m,n]上的F函数,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:解答题

在一个盒子里装有6张卡片,上面分别写着如下定义域为的函数:

(1)现在从盒子中任意取两张卡片,记事件为“这两张卡片上函数相加,所得新函数是奇函数”,求事件的概率;

(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是偶函数则停止抽取,否则继续进行,记停止时抽取次数为,写出的分布列,并求其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}的前n项和为Sn,且满足a4+a10=20,则S13=(  )
A.6B.130C.200D.260

查看答案和解析>>

同步练习册答案