精英家教网 > 高中数学 > 题目详情
4.已知抛物线Q:y2=2px(p>0).
(1)若Q上任意一点到焦点F的距离的最小值为1,求实数p的值.
(2)若点A在x轴上且在焦点F的右侧,以FA为直径的圆与抛物线在x轴上方交于不同的两点M,N,求证:FM+FN=FA.

分析 (1)设Q(x0,y0),(x0≥0),利用定义可得:|QF|=x0+$\frac{p}{2}$≥$\frac{p}{2}$,即可得出.
(2)设A(t,0),t>$\frac{p}{2}$.M(x1,y1),N(x2,y2).可得线段FA的中点G$(\frac{t+\frac{p}{2}}{2},0)$.可得⊙G的方程,结合抛物线化为:x2+$(\frac{3p}{2}-t)$x+$\frac{pt}{2}$=0.由于|FM|+|FN|=x1+x2+p,及|FA|=t-$\frac{p}{2}$.即可证明.

解答 (1)解:设Q(x0,y0),(x0≥0),则|QF|=x0+$\frac{p}{2}$≥$\frac{p}{2}$=1,解得p=2.
(2)证明:设A(t,0),t>$\frac{p}{2}$.M(x1,y1),N(x2,y2).
可得线段FA的中点G$(\frac{t+\frac{p}{2}}{2},0)$.
∴⊙G的方程为:$(x-\frac{t+\frac{p}{2}}{2})^{2}$+y2=$(\frac{t+\frac{p}{2}}{2}-\frac{p}{2})^{2}$,
化为${x}^{2}-(t+\frac{p}{2})$x+y2+$\frac{pt}{2}$=0,又y2=2px.
∴x2+$(\frac{3p}{2}-t)$x+$\frac{pt}{2}$=0.
∴x1+x2=t-$\frac{3}{2}$p.
∴|FM|+|FN|=x1+x2+p=t-$\frac{1}{2}$p.
又|FA|=t-$\frac{p}{2}$.
∴|FM|+|FN|=|FA|.

点评 本题考查了抛物线的定义标准方程及其性质、圆的方程、曲线相交问题、中点坐标公式,考查了数形结合方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知动圆M过定点F(0,1),且与x轴相切,点F关于圆心M的对称点为F′,点F′的轨迹为C
(Ⅰ)求曲线C的方程;
(Ⅱ)过点(-4,0)的直线l与曲线C交于A,B两点,求线段AB的垂直平分线的纵截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线C:x2=2y的焦点是F,M是抛物线C上任意一点,过M,F,O(O为坐标原点)三点的圆的圆心为Q,若直线MQ与抛物线C相切于点M,则点M的坐标为M$(±\sqrt{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数:f(x)=lnx-ax+1(a≠0).
(1)讨论函数f(x)的单调性;
(2)若对于任意的a∈[$\frac{1}{2}$,2],若函数g(x)=x3+$\frac{{x}^{2}}{2}$[m-2f′(x)]+3在区间(a,4)上有最值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p>0)上的点(6,y0)到其准线的距离为$\frac{15}{2}$.
(I)证明:抛物线C与直线x-y+8=0无公共点;
(Ⅱ)若A(a,0)(a≠0)过点A的直线l与抛物线交于M,N两点,探究:是否存在定值a,使得$\frac{1}{|AM|}$$+\frac{1}{|AN|}$的值不随直线l的变化而变化.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线C:y2=4x的交点为F,直线y=x-1与C相交于A,B两点,与双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=2(a>0,b>0)的渐近线相交于M,N两点,若线段AB与MN的中点相同,则双曲线E的离心率为$\frac{\sqrt{15}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线y2=2px(p>0),AB为过抛物线焦点F的弦,AB的中垂线交抛物线E于点M、N.若A、M、B、N四点共圆,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.双曲线$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的离心率为(  )
A.$\frac{5}{4}$B.$\frac{{\sqrt{7}}}{4}$C.$\frac{3}{4}$D.$\frac{{\sqrt{7}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线的方程为标准方程,焦点在x轴上,其上点P(-3,m)到焦点F1的距离为5,则抛物线方程为(  )
A.y2=8xB.y2=-8xC.y2=4xD.y2=-4x

查看答案和解析>>

同步练习册答案