精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知四面体中,,平面平面,分别为棱的中点。

(1)求证:平面;
(2)求证:;
(3)若内的点满足∥平面,设点构成集合,试描述点集的位置(不必说明理由)


∵在中,的中点,
.……………(1分)
又∵平面平面平面
平面平面,∴平面.…(5分)
⑵∵的中点,
.……(6分)
由⑴,又平面
平面.…………(9分)
平面,∴,即.…………………………(10分)
⑶取的中点,所有的点构成的集合即为的中位线.………………………………………………………………………………(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

 如图,已知点P是三角形ABC外一点,且底面
,点分别在棱上,且 。 。 

(1)求证:平面
(2)当的中点时,求与平面所成的角的大小;
(3)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱柱ADF—BCE中,侧棱底面,底面是等腰直角三角形,且MG分别是ABDF的中点.

(1)求证GA∥平面FMC;
(2)求直线DM与平面ABEF所成角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,正四棱柱中,,点上且,点是线段的中点
(Ⅰ)证明:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本题满分14分)
在多面体中,点是矩形的对角线的交点,三角形是等边三角形,棱
(Ⅰ)证明:平面
(Ⅱ)设
与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,不一定成立的为
A.AC⊥BEB.AC//截面PQMN
C.异面直线PM与BD所成的角为45°D.AC=BD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,
(Ⅰ)求
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD。
(1)求直线FD与平面ABCD所成的角;
(2)求点D到平面BCF的距离;
(3)求二面角B—FC—D的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,四棱锥中,底面为正方形,平面分别为的中点.

(1)求证:;
(2)求三棱锥的体积.                       

查看答案和解析>>

同步练习册答案