精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ex-ax-a(其中a∈R,e是自然对数的底数,e=2.71828…).
(Ⅰ)当a=e时,求函数f(x)的极值;
(Ⅱ)讨论函数f(x)的单调性
(Ⅲ)若f(x)≥0恒成立,求实数a的取值范围.

分析 (Ⅰ) 当a=e时,f(x)=ex-ex-e,f'(x)=ex-e,由导数确定函数的单调性及极值;
(Ⅱ)求出函数的导数,通过讨论a得到范围,求出函数的单调区间即可;
(Ⅲ)由f(x)=ex-ax-a,f'(x)=ex-a,从而化恒成立问题为最值问题,讨论求实数a的取值范围.

解答 解:(Ⅰ) 当a=e时,f(x)=ex-ex-e,f'(x)=ex-e,
当x<1时,f'(x)<0;当x>1时,f'(x)>0.
所以函数f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,
所以函数f(x)在x=1处取得极小值f(1)=-e,函数f(x)无极大值.
(Ⅱ)f(x)=ex-ax-a,f′(x)=ex-a,
当a≤0时,f′(x)>0,则f(x)在R上单调递增;
当a>0时,令f′(x)=ex-a=0,得x=lna,
则在(-∞,lna]上单调递减,在(lna,+∞)上单调递增;
(Ⅲ)由f(x)=ex-ax-a,f'(x)=ex-a,
若a<0,则f'(x)>0,函数f(x)单调递增,
当x趋近于负无穷大时,f(x)趋近于负无穷大;
当x趋近于正无穷大时,f(x)趋近于正无穷大,
故a<0不满足条件.
若a=0,f(x)=ex≥0恒成立,满足条件.
若a>0,由f'(x)=0,得x=lna,
当x<lna时,f'(x)<0;当x>lna时,f'(x)>0,
所以函数f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
所以函数f(x)在x=lna处取得极小值f(lna)=elna-a•lna-a=-a•lna,
由f(lna)≥0得-a•lna≥0,
解得0<a≤1.
综上,满足f(x)≥0恒成立时实数a的取值范围是[0,1].

点评 本题考查了导数的综合应用及恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若(1+x)5=a0+a1x+a2x2+…+a5x5,则a1+a2+…+a5=31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)是二次函数,且f(0)=2,f(x-1)-f(x)=2x+4,求函数f(x)的解析式,并写出其单调区间(不证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列程序框图对应的函数是(  )
A.f(x)=xB.f(x)=-xC.f(x)=|x|D.f(x)=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.与函数f(x)=$\sqrt{{x}^{2}}$表示同一函数提(  )
A.g(x)=$\frac{{x}^{2}}{x}$B.g(x)=($\sqrt{x}$)2C.g(x)=xD.g(x)=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若不等式组$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$,表示的平面区域是一个三角形区域,则a的取值范围是(  )
A.a≥$\frac{4}{3}$B.0<a≤1C.1≤a≤$\frac{4}{3}$D.0<a≤1或a≥$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:
消费次第第1次第2次第3次第4次≥5次
收费比例10.950.900.850.80
该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:
消费次第第1次第2次第3次第4次第5次
频数60201055
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为X元,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在一次考试中,某班学生的及格率是70%,这里所说的70%是频率(填概率或频率)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.化简:tanα+$\sqrt{\frac{1}{co{s}^{2}α}-1}$+2sin2α+2cos2α,其中α是第四象限角.

查看答案和解析>>

同步练习册答案