精英家教网 > 高中数学 > 题目详情
18.全称命题“?x∈R,x2+5x=4”的否定是$?{x_0}∈R,x_0^2+5{x_0}≠4$.

分析 根据全称命题的否定是特称命题进行求解即可.

解答 解:命题是全称命题,
则命题的否定是特称命题,
即$?{x_0}∈R,x_0^2+5{x_0}≠4$,
故答案为:$?{x_0}∈R,x_0^2+5{x_0}≠4$

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若点P在以F1(-1,0),F2(1,0)为焦点的椭圆C上,且△PF1F2的周长为6,则椭圆C的离心率e=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\frac{tanα}{tanα-1}=-1$,则$\frac{sinα-3cosα}{sinα+cosα}$=(  )
A.$-\frac{5}{3}$B.3C.$-\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U=R,A={x|x>1},B={x|x<0},则集合(∁UA)∩(∁UB)=(  )
A.{x|x≥0}B.{x|x≤1}C.{x|0<x<1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.化简2sin15°sin75°的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(3,-2,1),$\overrightarrow{b}$=(-2,4,0),则4$\overrightarrow{a}$+2$\overrightarrow{b}$等于(  )
A.(16,0,4)B.(8,0,4)C.(8,16,4)D.(8,-16,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2(sinx+cosx)-sinxcosx-2(x∈R),则f(x)的最大值为$\frac{{4\sqrt{2}-5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sin(α+β)=$\frac{1}{2},sin(α-β)=\frac{1}{10}$,则tanαcotβ=(  )
A.$\frac{3}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\sqrt{-{x^2}+4x-3}$的定义域是(  )
A.(-∞,1]B.[3,+∞)C.[1,3]D.(-∞,1]∪[3,+∞)

查看答案和解析>>

同步练习册答案