精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2(sinx+cosx)-sinxcosx-2(x∈R),则f(x)的最大值为$\frac{{4\sqrt{2}-5}}{2}$.

分析 令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],可得sinxcosx=$\frac{{t}^{2}-1}{2}$,再利用二次函数的性质求得函数的最大值.

解答 解:令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],可得t2=1+2sinxcosx,∴sinxcosx=$\frac{{t}^{2}-1}{2}$,
函数f(x)=2(sinx+cosx)-sinxcosx-2=2t-$\frac{{t}^{2}-1}{2}$-2=-$\frac{1}{2}$t2+2t-$\frac{3}{2}$=-$\frac{1}{2}$(t2-4t)-$\frac{3}{2}$=-$\frac{1}{2}$(t-2)2+$\frac{1}{2}$,
故当t=$\sqrt{2}$时,函数f(x)取得最大值为-$\frac{1}{2}$•${(\sqrt{2}-2)}^{2}$+$\frac{1}{2}$=$\frac{4\sqrt{2}-5}{2}$,
故答案为:$\frac{4\sqrt{2}-5}{2}$.

点评 本题主要考查求三角函数的最值,用t表示函数的解析式,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为(  )
A.1B.2C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l在x轴上的截距为3,在y轴上的截距为-2,则l的方程为(  )
A.3x-2y-6=0B.2x-3y+6=0C.2x-3y-6=0D.3x-2y+6=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.全称命题“?x∈R,x2+5x=4”的否定是$?{x_0}∈R,x_0^2+5{x_0}≠4$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列说法:
①扇形的周长为8cm,面积为4cm2,则扇形的圆心角弧度数为2rad;
②函数f(x)=2cosx(sinx+cosx)的最大值为$\sqrt{2}$;
③若α是第三象限角,则$y=\frac{{|sin\frac{α}{2}|}}{{sin\frac{α}{2}}}+\frac{{|cos\frac{α}{2}|}}{{cos\frac{α}{2}}}$的值为0或-2;
④若sinα=sinβ,则α与β的终边相同;
其中正确的是①.(写出所有正确答案)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若点P(x,y)在曲线$\left\{{\begin{array}{l}{x=-1+cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数,θ∈R)上,则$\frac{y}{x-1}$的取值范围是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC的三边a,b,c成等差数列,则角B的范围是(  )
A.$({0,\frac{π}{3}}]$B.$[{\frac{π}{6},\frac{π}{2}})$C.$[{\frac{π}{4},\frac{π}{2}})$D.$({0,\frac{π}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率e=$\frac{{\sqrt{2}}}{2}$,P为椭圆E上的任意一点(不含长轴端点),且△PF1F2面积的最大值为2.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线l:x=my+1(m∈R)交椭圆E于A、B两点,试探究:点M(3,0)与以线段AB为直径的圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的前n项和为Sn,且满足a1=2,nan+1=Sn+n(n+1),求数列{an}的通项an

查看答案和解析>>

同步练习册答案