精英家教网 > 高中数学 > 题目详情
14.已知矩阵A=$(\begin{array}{l}{a}&{2}\\{-1}&{4}\end{array})$.A的一个特征值λ=2.
(1)求矩阵A;
(2)在平面直角坐标系中,点P(1,1)依次在矩阵A所对应的变换σ和关于x轴对称的反射变换γ的作用下得到点P′,写出复合变换γ•σ的变换公式,并求出点P′的坐标.

分析 根据矩阵M的一个特征值为1,代入特征多项式求出a的值,求出γ•σ,即可求出点P′的坐标.

解答 解:矩阵M的特征多项式f(λ)=(λ-a)(λ-4)+2,
又∵矩阵M的一个特征值为2,
∴f(2)=0,∴a=1,
由γ•σ=$[\begin{array}{l}{1}&{0}\\{0}&{-1}\end{array}][\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$=$[\begin{array}{l}{1}&{2}\\{1}&{-4}\end{array}]$,
设P′(x,y),则$[\begin{array}{l}{1}&{2}\\{1}&{-4}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,
∴x=3,y=-3,
∴P′(3,-3).

点评 本题主要考查矩阵的特征值与变换等基础知识,考查运算求解能力及函数与方程思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,正方体ABCD-A1B1C1D1中,E是棱DD1的中点,F是侧面CDD1C1上的动点,且B1F∥平面A1BE,则B1F与平面CDD1C1所成角的正切值构成的集合是(  )
A.{2}B.{$\frac{{2\sqrt{5}}}{5}$}C.[2,2$\sqrt{2}$]D.[$\frac{{2\sqrt{5}}}{5}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,M是棱PC的中点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:PE⊥平面ABCD;
(2)求直线BM与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{1}{2}$x2-alnx+(a-1)x,对任意的x1,x2∈(0,+∞),x1≠x2,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求导数:y=$\frac{{x}^{2}}{x+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,AB=4,BC=2$\sqrt{2}$,且DE为折痕,将Rt△ADE折起到图2的位置,使平面PDE⊥平面DBCE,连接PC,PB,设G是线段BC的中点,F为线段PC上的动点,满足$\overrightarrow{CF}=λ\overrightarrow{CP}$
(1)当λ为何值时,平面EFG∥平面PDB,试说明理由;
(2)当λ=$\frac{1}{3}$时,求多面体PDBGFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等差数列{an}的前n项和为Sn,已知bn=$\frac{1}{{S}_{n}}$,且a3b3=$\frac{1}{2}$与S3+S5=21,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,其左焦点与抛物线C:y2=-4x的焦点相同.
(1)求此椭圆的方程;
(2)若过此椭圆的右焦点F的直线l与曲线C只有一个交点P,则
①求直线l的方程;
②椭圆上是否存在点M(x,y),使得S△MPF=$\frac{1}{2}$,若存在,请说明一共有几个点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=CD,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)求证:PA∥平面EDB;
(Ⅱ)求证:PB⊥平面EFD;
(Ⅲ)求二面角P-BC-D的大小.

查看答案和解析>>

同步练习册答案