精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x3-3x.
(Ⅰ)求f(x)在区间[-2,1]上的最大值;
(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;
(Ⅲ)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)
考点:导数在最大值、最小值问题中的应用,函数的零点,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)利用导数求得极值点比较f(-2),f(-
2
2
),f(
2
2
),f(1)的大小即得结论;
(Ⅱ)利用导数的几何意义得出切线方程4
x
3
0
-6
x
2
0
+t+3=0,设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,
等价于“g(x)有3个不同的零点”.利用导数判断函数的单调性进而得出函数的零点情况,得出结论;
(Ⅲ)利用(Ⅱ)的结论写出即可.
解答: 解:(Ⅰ)由f(x)=2x3-3x得f′(x)=6x2-3,
令f′(x)=0得,x=-
2
2
或x=
2
2

∵f(-2)=-10,f(-
2
2
)=
2
,f(
2
2
)=-
2
,f(1)=-1,
∴f(x)在区间[-2,1]上的最大值为
2


(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),
则y0=2
x
3
0
-3x0,且切线斜率为k=6
x
2
0
-3,
∴切线方程为y-y0=(6
x
2
0
-3)(x-x0),
∴t-y0=(6
x
2
0
-3)(1-x0),
即4
x
3
0
-6
x
2
0
+t+3=0,
设g(x)=4x3-6x2+t+3,
则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.
∵g′(x)=12x2-12x=12x(x-1),
∴g(x)与g′(x)变化情况如下:
    x(-∞,0)   0 (0,1)   1(1,+∞)
   g′(x)+   0-   0+
   g(x)  t+3  t+1
∴g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.
当g(0)=t+3≤0,即t≤-3时,g(x)在区间(-∞,1]和(1,+∞)上分别至多有一个零点,故g(x)至多有2个零点.
当g(1)=t+1≥0,即t≥-1时,g(x)在区间(-∞,0]和(0,+∞)上分别至多有一个零点,故g(x)至多有2个零点.
当g(0)>0且g(1)<0,即-3<t<-1时,∵g(-1)=t-7<0,g(2)=t+11>0,
∴g(x)分别在区间[-1,0),[0,1)和[1,2)上恰有1个零点,由于g(x)在区间(-∞,0)和[1,+∞)上单调,
故g(x)分别在区间(-∞,0)和[1,+∞)上恰有1个零点.
综上所述,当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(-3,-1).

(Ⅲ)过点A(-1,2)存在3条直线与曲线y=f(x)相切;
过点B(2,10)存在2条直线与曲线y=f(x)相切;
过点C(0,2)存在1条直线与曲线y=f(x)相切.
点评:本题主要考查利用导数求切线方程及判断函数的单调性求最值等知识,考查转化划归思想及分类讨论思想的运用能力和运算能力,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,在二项式(a-
x
10的展开式中,含x的项的系数与含x4的项的系数相等,则a的值为(  )
A、1B、2C、4D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.
(1)证明:CF⊥平面MDF;
(2)求三棱锥M-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.
(1)证明:CF⊥平面ADF;
(2)求二面角D-AF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点(0,
3
),离心率为
1
2
,左右焦点分别为F1(-c,0),F2(c,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l:y=-
1
2
x+m与椭圆交于A、B两点,与以F1F2为直径的圆交于C、D两点,且满足
|AB|
|CD|
=
5
3
4
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F、G分别为AC、DC、AD的中点.
(Ⅰ)求证:EF⊥平面BCG;
(Ⅱ)求三棱锥D-BCG的体积.
附:锥体的体积公式V=
1
3
Sh,其中S为底面面积,h为高.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,点P在平面ABC上的射影D是AC的中点,BC=2AC=8,AB=4
5

(Ⅰ)证明:平面PBC⊥平面PAC;
(Ⅱ)若PD=2
3
,求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
m2
-
y2
n2
=1(m>n>0)和椭圆
x2
m2
+
y2
n2
=1(m>n>0)的离心率分别为e1和e2,则e1e2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知底面边长为1,侧棱长为
2
的正四棱柱的各顶点均在同一球面上,则该球的体积为(  )
A、
32π
3
B、4π
C、2π
D、
4
3
π

查看答案和解析>>

同步练习册答案