精英家教网 > 高中数学 > 题目详情
3.4位学生与2位教师坐在一排合影留念,教师不能坐在两端,且不能相邻,则不同的坐法种数有(  )
A.72B.48C.24D.144

分析 先排4位学生,由排列公式可得其坐法数目,根据题意,将2名教师插在4个学生符合要求的3个空位中,有A32种坐法,由分步计数原理计算可得答案.

解答 解:先排4位学生,有A44种坐法,
教师不能相邻,将其依次插在4个学生的空位中,
又由教师不能坐在两端,则有3个空位可选,有A32种坐法,
则共有A44A32=144种坐法.
故选:D.

点评 本题考查排列、组合的运用,关键在于掌握常见的问题的处理方法,如相邻问题用捆绑法,不相邻问题用插空法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知双曲线C1:$\frac{x^2}{3}$-$\frac{{16{y^2}}}{p^2}$=1的左焦点在抛物线C2:y2=2px(p>0)的准线上,则双曲线C1的离心率为(  )
A.$\frac{4}{3}$B.$\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.两张卡片的正、反两面分别写有1,2;3,4,将这两张卡片排成一排,可以构成8个不同的两位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,等腰梯形ABCD的底角A等于60°,其外接圆圆心O在边AD上,直角梯形PDAQ垂直于圆O所在平面,∠QAD=∠PDA=90°,且AD=2AQ=4
(1)证明:平面ABQ⊥平面PBD;
(2)若二面角D-PB-C的平面角等于45°,求多面体PQABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:x2-2x+a≥0在R上恒成立,命题q:?x0∈R,x02+2ax0+2-a=0,若p或q为真,¬p为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.为了研究某种细菌在特定环境下,随时间变化的繁殖情况,得到的实验数据如表,并由此计算得回归直线方程为$\stackrel{∧}{y}$=0.85x-0.25,后来因工作人员不慎将如表中的实验数据c丢失.
天数t(天)34567
繁殖个数y(千个)c344.56
则上表中丢失的实验数据c的值为2.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线l交椭圆于A,B两点,|AB|的最小值为3,且△ABF2的周长为8.
(1)求椭圆的方程;
(2)当直线l不垂直于x轴时,点A关于x轴的对称点为A′,证明直线A′B恒过定点,并求此定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x}{a}$+$\frac{a}{x}$(a为常数,x>0),
(Ⅰ)求函数f(x)在(0,+∞)上的单调区间;
(Ⅱ)当a=$\frac{1}{2}$时
(1)若曲线y=f(x)在点(x0,f(x0))处的切线与直线2x+3y-3=0垂直,求曲线在该点处的切线方程;
(2)求证:f(x)>lnx+$\frac{1}{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出下列四个结论:
①“若am2<bm2,则a<b”的逆命题是真命题;
②若x,y∈R,则“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件;
③函数y=loga(x+1)+1(a>0且a≠0)的图象必过点(0,1);
④已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0.4,则P(ξ>2)=0.2.
其中正确的结论是(  )
A.①②B.①③C.②③D.③④

查看答案和解析>>

同步练习册答案